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provided one imposes a smallness condition on a along with a divergence free condition. In
the other direction we show that for N > 4and p > ﬁ—:; there exists a positive solution of
(1) provided a satisfies a smallness condition. For p > p. we show the existence of a positive
stable solution of (1) provided a is divergence free and satisfies a smallness condition.
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1. Introduction and results

In this article we are interested in the existence versus nonexistence of positive stable solutions of
— Au+a(x)-Vu=u’ inR", (2)
where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We now define the notion of stability and
for this we prefer to work on a general domain.

Definition 1. Let u denote a nonnegative smooth solution of (2) in an open set £2 C RN. We say u is a stable solution of (2)
in £2 provided there is some smooth positive function E such that

— AE4a(x) - VE > pu* 'E in . (3)

We begin by recalling some facts in the case where a(x) = 0. There has been much work done on the existence and
nonexistence of positive classical solutions of

—Au=uP, inRV. (4)
For N > 3 there exists a critical value of p, given by ps = % such that for 1 < p < ps there is no positive classical solution
of (4) and for p > ps there exist positive classical solutions, see [ 1-4]. By definition we call a nonnegative solution u of (4)

stable if

/pup‘1¢2 < f Vo> V¢ e C°RY), (5)
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which is nothing more than the stability of u using (3), after using a variational principle. The additional requirement that
the solution be stable drastically alters the existence versus nonexistence results. It is known that there is a new critical
exponent, the so called Joseph-Lundgren exponent p., such that forall 1 < p < p, there is no positive stable solution of (4)
and for p > p. there exist positive stable solutions of (4). The value of the p. is given by

(N—2)2 —4N+8N -1
_ N> 11
pc = (N =2)(N —10)
00 3 <N <10.

The first implicit appearance of p. was in the work [5] where they examined —Au = A(u + 1) on the unit ball in RN with
zero Dirichlet boundary conditions. The exponent p, first explicitly appeared in the works [6,7] where they examined the
stability of radial solutions to a parabolic version of (4). Their results easily imply the existence of a positive radial stable
solution of (4) when p > p. and the nonexistence of positive radial stable solutions in the case of p < p.. More recently
there has been interest in finite Morse index solutions of either (4) and the generalized version given by

— Au= |[uP~'u, inRV. (6)

In [8] they completely classified the finite Morse index solutions of (6) and again the critical exponent p, was involved. For
results regarding singular nonlinearities, general nonlinearities, or quasilinear equation see [9-14].
In the work [15] the nonexistence of nontrivial solutions of

—div(w1Vu) = wpu?  inRY,
was examined where w; are some nonnegative functions. In the special case where w; = w, this equation reduces to
—Au+Vy®)  -Vu=uP inR", (7)

where y is a scalar function. Even though (7) and (2) are similar a major difference is that (7) is variational in nature; critical
points of

1 1
E(u) = f/e_V|Vu|2 — —/e—muv’“,
2 p+1

are solutions of (7). This variational structure of (7) allows one to prove various nonexistence results for (7) by slightly
modifying the nonexistence proofs used in proving similar results for —Au = u? in RV. This approach will generally not
work for (2) since in general there will not be a variational structure.

In [16] the regularity of the extremal solution, u*, associated with problems of the form

—Au+ax)-Vu=Af(u) inf
u=~0 on 452,

was examined for various nonlinearities f. Here a(x) was an arbitrary smooth advection and the main difficulty was to
utilize the stability of u* in a meaningful way. As mentioned earlier, this is not a problem when a(x) is the gradient of a
scalar function. The main tool used was the generalized Hardy inequality from [17]. This same approach was extended to
more general nonlinearities in [18].

We now list our results.

Theorem 1. Suppose3 < N < 10or N > 11and 1 < p < p.. Suppose a(x) is a smooth divergence free vector field satisfying
lax)| < \xI% with 0 < C sufficiently small. Then there is no positive stable solution of (2).
The next result gives a decay estimate in the case of p < p.. We are including this result since it may allow one to use a
Lane-Emden type of change of variables to obtain a nonexistence result without a smallness condition on the advection.
N+2

Theorem 2. Suppose =5 < p < P, a(x) is a smooth divergence free vector field with |a(x)| < ‘X‘CH and |a| € IN(RN). Then

any positive stable solution u of (2) satisfies

lim [x|7Tu(x) = 0. (8)

|x|—00

The approach to solve Theorem 1 will be to combine the methods used in [8] with the techniques from [16] which relied
on generalized Hardy inequalities from [ 17]. The same approach will be used in the proof of Theorem 2 with an added scaling
argument.

Our final result gives an existence result.

Theorem 3. 1. SupposeN > 4,p > Y1

there exists a positive solution of (2).
2. Suppose N > 11,p > p. and let a(x) denote some smooth divergence free vector field with |a(x)] < —=. For 0 < C

[X|+1°
sufficiently small (2) has a positive stable solution.

and a(x) is some smooth vector field with |a(x)| < ‘X‘% If 0 < C is sufficiently small
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