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a b s t r a c t

We examine the equation given by

−∆u + a(x) · ∇u = up in RN , (1)

where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We show
that for p < pc , the Joseph–Lundgren exponent, there is no positive stable solution of (1)
provided one imposes a smallness condition on a alongwith a divergence free condition. In
the other direction we show that for N ≥ 4 and p > N−1

N−3 there exists a positive solution of
(1) provided a satisfies a smallness condition. For p > pc weshow the existence of a positive
stable solution of (1) provided a is divergence free and satisfies a smallness condition.

Published by Elsevier Ltd.

1. Introduction and results

In this article we are interested in the existence versus nonexistence of positive stable solutions of

−∆u + a(x) · ∇u = up in RN , (2)
where p > 1 and a(x) is a smooth vector field satisfying some decay conditions. We now define the notion of stability and
for this we prefer to work on a general domain.

Definition 1. Let u denote a nonnegative smooth solution of (2) in an open setΩ ⊂ RN . We say u is a stable solution of (2)
inΩ provided there is some smooth positive function E such that

−∆E + a(x) · ∇E ≥ pup−1E inΩ. (3)

We begin by recalling some facts in the case where a(x) = 0. There has been much work done on the existence and
nonexistence of positive classical solutions of

−∆u = up, in RN . (4)
For N ≥ 3 there exists a critical value of p, given by pS =

N+2
N−2 , such that for 1 < p < pS there is no positive classical solution

of (4) and for p > pS there exist positive classical solutions, see [1–4]. By definition we call a nonnegative solution u of (4)
stable if

pup−1φ2
≤


|∇φ|

2
∀φ ∈ C∞

c (R
N), (5)
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which is nothing more than the stability of u using (3), after using a variational principle. The additional requirement that
the solution be stable drastically alters the existence versus nonexistence results. It is known that there is a new critical
exponent, the so called Joseph–Lundgren exponent pc , such that for all 1 < p < pc there is no positive stable solution of (4)
and for p > pc there exist positive stable solutions of (4). The value of the pc is given by

pc =

 (N − 2)2 − 4N + 8
√
N − 1

(N − 2)(N − 10)
N ≥ 11

∞ 3 ≤ N ≤ 10.

The first implicit appearance of pc was in the work [5] where they examined −∆u = λ(u + 1)p on the unit ball in RN with
zero Dirichlet boundary conditions. The exponent pc first explicitly appeared in the works [6,7] where they examined the
stability of radial solutions to a parabolic version of (4). Their results easily imply the existence of a positive radial stable
solution of (4) when p > pc and the nonexistence of positive radial stable solutions in the case of p < pc . More recently
there has been interest in finite Morse index solutions of either (4) and the generalized version given by

−∆u = |u|p−1u, in RN . (6)

In [8] they completely classified the finite Morse index solutions of (6) and again the critical exponent pc was involved. For
results regarding singular nonlinearities, general nonlinearities, or quasilinear equation see [9–14].

In the work [15] the nonexistence of nontrivial solutions of

−div(ω1∇u) = ω2up in RN ,

was examined where ωi are some nonnegative functions. In the special case where ω1 = ω2 this equation reduces to

−∆u + ∇γ (x) · ∇u = up in RN , (7)

where γ is a scalar function. Even though (7) and (2) are similar a major difference is that (7) is variational in nature; critical
points of

E(u) =
1
2


e−γ

|∇u|2 −
1

p + 1


e−γ

|u|p+1,

are solutions of (7). This variational structure of (7) allows one to prove various nonexistence results for (7) by slightly
modifying the nonexistence proofs used in proving similar results for −∆u = up in RN . This approach will generally not
work for (2) since in general there will not be a variational structure.

In [16] the regularity of the extremal solution, u∗, associated with problems of the form
−∆u + a(x) · ∇u = λf (u) inΩ
u = 0 on ∂Ω,

was examined for various nonlinearities f . Here a(x) was an arbitrary smooth advection and the main difficulty was to
utilize the stability of u∗ in a meaningful way. As mentioned earlier, this is not a problem when a(x) is the gradient of a
scalar function. The main tool used was the generalized Hardy inequality from [17]. This same approach was extended to
more general nonlinearities in [18].

We now list our results.

Theorem 1. Suppose 3 ≤ N ≤ 10 or N ≥ 11 and 1 < p < pc . Suppose a(x) is a smooth divergence free vector field satisfying
|a(x)| ≤

C
|x|+1 with 0 < C sufficiently small. Then there is no positive stable solution of (2).

The next result gives a decay estimate in the case of p < pc . We are including this result since it may allow one to use a
Lane–Emden type of change of variables to obtain a nonexistence result without a smallness condition on the advection.

Theorem 2. Suppose N+2
N−2 < p < pc, a(x) is a smooth divergence free vector field with |a(x)| ≤

C
|x|+1 and |a| ∈ LN(RN). Then

any positive stable solution u of (2) satisfies

lim
|x|→∞

|x|
2

p−1 u(x) = 0. (8)

The approach to solve Theorem 1 will be to combine the methods used in [8] with the techniques from [16] which relied
on generalizedHardy inequalities from [17]. The same approachwill be used in the proof of Theorem2with an added scaling
argument.

Our final result gives an existence result.

Theorem 3. 1. Suppose N ≥ 4, p > N+1
N−3 and a(x) is some smooth vector field with |a(x)| ≤

C
|x|+1 . If 0 < C is sufficiently small

there exists a positive solution of (2).
2. Suppose N ≥ 11, p > pc and let a(x) denote some smooth divergence free vector field with |a(x)| ≤

C
|x|+1 . For 0 < C

sufficiently small (2) has a positive stable solution.
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