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1. Introduction

We consider the Navier-Stokes equations in the full three-dimensional space, i.e.

ou

E—Au—l—qu—f—Vp:O inR? x (0, 00), (1)

V.-u=0 inR®x (0, 00), (2)

Ulr=o = Uo, (3)
where u = u(x,t) = (ui(x,t),ux(x,t),us(x,t)) and p = p(x,t) denote the unknown velocity and pressure and

Ug = Up(x) = (up1(%), up2(X), up3(x)) is a given initial velocity.

It is known that for uy € 2 (solenoidal functions from [?) the problem (1)-(3) possesses at least one global weak
solution u satisfying the energy inequality [|u(t)||3/2 + for [Vu(r)ll3 dr < |lugll3/2 for every t > 0 (see [1] or [2]). If
up € W}2 (solenoidal functions from the standard Sobolev space W'2) then u is known to be regular on some (possibly
small) time interval. It is a classical question to ask under which conditions u is regular on an interval (0,T), T > 0,
ie. Vu € [£2([0, T); %), u € L2 (0, T; W2?2) and (subsequently) u € C;2((0, T) x R*) (see [2]). There exist many criteria
in the literature ensuring the positive answer (see for example [3-11]). In this paper we are interested in criteria involving
the gradient of one velocity component Vus. It has not yet been reached in these criteria the level corresponding to the
natural scaling of the Navier-Stokes solutions, i.e. 2/t + 3/s = 2, in contrast, for example, with the situation in criteria
involving one direction derivative d;u, where the situation seems to be simpler (see [4,12]). Let us present several recent
results: it was proved by Pokorny in [13] that u is regular on (0, T) provided that Vuz € L'(0, T; L¥), 2/t + 3/s < 3/2 and
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s € [2, oo]. In [12] Kukavica and Ziane presented the following criterion: Vus € L'(0, T; L*), where 2/t + 3/s < 11/6 and
s € [54/23, 18/5]. Pokorny and Zhou (see [14,15]) improved the previous results and proved the regularity of u on (0, T)
under the condition that Vusz € L*(0, T; L¥) and
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In this paper we will focus on the method used in [14,15]. The method cleverly combines the estimates of ds3u and
Vhu = (01u, dou). Nevertheless it seems that its potential has not yet been completely fulfilled. By adjusting it we will
be able to improve the results from [14,15] for s € [30/19, 150/77) and s € (10/3, oo]. Thus, the basic message of this
short paper is the following one: it is not excluded that by some optimal application of the method one could get a criterion
corresponding to the natural scaling of the Navier-Stokes equations, i.e.2/t +3/s = 2, or at least further improve the results
from [14,15] and Theorem 1. Theorem 1 sums up precisely our main result.

Theorem 1. Let u be a global weak solution to (1)-(3) corresponding to the initial condition uy € W2 and satisfying the energy
inequality. Let T > 0, Vus € L'(0, T; L*) and
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Then u is regular on (0, T), i.e. Vu € L2([0, T); L?), u € L2 (0, T; W*?) and (subsequently) u € C22((0, T) x R®).

loc

Throughout the paper we use several times the following special case of the Troisi inequality (see [16] or [17]): there
exists a constant C > 0 such that for every v € (g° (R?)

3 1
lvlls < C [ Tlawll; - (4)
i=1
Due to the density argument and the sufficient regularity of u this inequality can be applied to u from Theorem 1. We will
also often use a special case of (4): ||v|lg < C||Vv]|>.
In the paper we denote f f(x) dx the integral over the whole three-dimensional space. We write [? instead of LP(R?). C
denotes a generic constant which can change from line to line.

2. Proof of Theorem 1

Proof of Theorem 1. Let T* = sup{r > O; uisregularon (0, 7)}. Since up € W2, u is regular on some positive time
interval and T* is either equal to infinity (in which case the proof is finished) or it is a positive number and u is regular
on (0, T*). It is sufficient to prove that T* > T. We proceed by contradiction and suppose that T* < T. We takee > 0
sufficiently small (it will be made precise at the end of the proof of Theorem 1) and fix T; € (0, T*) suchthatT* — T; < ¢
and fTT: | Vu(t)||?dt < e. Taking arbitrarily T, € (T;, T*) the proof will be finished if we show that | Vu(T,)|, < C < oo,
where C is independent of T,. Actually, the standard extension argument then shows that the regularity of u can be extended
beyond T* and it is contradiction with the definition of T*. We will use

)
J(T)> = sup ||vh(f)||%+/ IV Vhu(t) |3 de
t€(T1,T) Ty

and

T,
LG = sup [|su()l + / IVasu(o)|2 de.
Te(T1,T2) T
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