Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On the regularity of the solutions to the Navier–Stokes equations via the gradient of one velocity component

Zdeněk Skalák

Czech Technical University, Prague, Thákurova 7, 166 29 Prague 6, Czech Republic

ARTICLE INFO

Article history: Received 15 December 2013 Accepted 24 March 2014 Communicated by Enzo Mitidieri

MSC: 35Q30 76D05

Keywords: Navier–Stokes equations Regularity of solutions Regularity criteria

1. Introduction

We consider the Navier-Stokes equations in the full three-dimensional space, i.e.

$\frac{\partial u}{\partial t} - \Delta u + u \cdot \nabla u + \nabla p = 0 \text{in } \mathbf{R}^3 \times (0, \infty),$	(1)
$\nabla \cdot u = 0 \text{in } \mathbf{R}^3 \times (0, \infty),$	(2)
$ u _{t=0} = u_0,$	(3)

where $u = u(x, t) = (u_1(x, t), u_2(x, t), u_3(x, t))$ and p = p(x, t) denote the unknown velocity and pressure and $u_0 = u_0(x) = (u_{01}(x), u_{02}(x), u_{03}(x))$ is a given initial velocity.

It is known that for $u_0 \in L^2_{\sigma}$ (solenoidal functions from L^2) the problem (1)–(3) possesses at least one global weak solution u satisfying the energy inequality $||u(t)||_2^2/2 + \int_0^t ||\nabla u(\tau)||_2^2 d\tau \leq ||u_0||_2^2/2$ for every $t \geq 0$ (see [1] or [2]). If $u_0 \in W^{1,2}_{\sigma}$ (solenoidal functions from the standard Sobolev space $W^{1,2}$) then u is known to be regular on some (possibly small) time interval. It is a classical question to ask under which conditions u is regular on an interval (0, T), T > 0, i.e. $\nabla u \in L^\infty_{loc}([0, T); L^2), u \in L^2_{loc}(0, T; W^{2,2})$ and (subsequently) $u \in C^\infty_{loc}((0, T) \times R^3)$ (see [2]). There exist many criteria in the literature ensuring the positive answer (see for example [3–11]). In this paper we are interested in criteria involving the gradient of one velocity component ∇u_3 . It has not yet been reached in these criteria the level corresponding to the natural scaling of the Navier–Stokes solutions, i.e. 2/t + 3/s = 2, in contrast, for example, with the situation in criteria involving one direction derivative $\partial_3 u$, where the situation seems to be simpler (see [4,12]). Let us present several recent results: it was proved by Pokorný in [13] that u is regular on (0, T) provided that $\nabla u_3 \in L^t(0, T; L^s), 2/t + 3/s \leq 3/2$ and

http://dx.doi.org/10.1016/j.na.2014.03.018 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

We improve a regularity criterion for the solutions to the Navier–Stokes equations in the full three-dimensional space involving the gradient of one velocity component. Revising the method used in Pokorný and Zhou (2009, 2010), we show that a weak solution u is regular on (0, T) provided that $\nabla u_3 \in L^t(0, T; L^s)$, where 2/t + 3/s = 19/10 for $s \in [30/19, 10/3]$ and 2/t + 3/s = 7/4 + 1/(2s) for $s \in [10/3, \infty]$. It improves the known results for $s \in [30/19, 150/77)$ and $s \in (10/3, \infty]$.

© 2014 Elsevier Ltd. All rights reserved.

E-mail address: skalak@mat.fsv.cvut.cz.

 $s \in [2, \infty]$. In [12] Kukavica and Ziane presented the following criterion: $\nabla u_3 \in L^t(0, T; L^s)$, where $2/t + 3/s \le 11/6$ and $s \in [54/23, 18/5]$. Pokorný and Zhou (see [14,15]) improved the previous results and proved the regularity of u on (0, T) under the condition that $\nabla u_3 \in L^t(0, T; L^s)$ and

$$\begin{aligned} \frac{2}{t} + \frac{3}{s} &\leq \frac{19}{12} + \frac{1}{2s}, \quad s \in \left(\frac{30}{19}, \frac{90}{49}\right], \\ \frac{2}{t} + \frac{3}{s} &\leq \frac{53}{18} - \frac{2}{s}, \quad s \in \left(\frac{90}{49}, \frac{54}{29}\right], \\ \frac{2}{t} + \frac{3}{s} &\leq \frac{61}{24} - \frac{5}{4s}, \quad s \in \left(\frac{54}{29}, 2\right), \\ \frac{2}{t} + \frac{3}{s} &\leq \frac{23}{12}, \quad s \in [2, 3), \\ \frac{2}{t} + \frac{3}{s} &\leq \frac{7}{4} + \frac{1}{2s}, \quad s \in \left[3, \frac{10}{3}\right), \\ \frac{2}{t} + \frac{3}{s} &\leq \frac{3}{2} + \frac{4}{3s}, \quad s \in \left[\frac{10}{3}, \infty\right). \end{aligned}$$

In this paper we will focus on the method used in [14,15]. The method cleverly combines the estimates of $\partial_3 u$ and $\nabla_h u = (\partial_1 u, \partial_2 u)$. Nevertheless it seems that its potential has not yet been completely fulfilled. By adjusting it we will be able to improve the results from [14,15] for $s \in [30/19, 150/77)$ and $s \in (10/3, \infty]$. Thus, the basic message of this short paper is the following one: it is not excluded that by some optimal application of the method one could get a criterion corresponding to the natural scaling of the Navier–Stokes equations, i.e. 2/t + 3/s = 2, or at least further improve the results from [14,15] and Theorem 1 sums up precisely our main result.

Theorem 1. Let u be a global weak solution to (1)–(3) corresponding to the initial condition $u_0 \in W^{1,2}_{\sigma}$ and satisfying the energy inequality. Let T > 0, $\nabla u_3 \in L^t(0, T; L^s)$ and

 $\begin{aligned} &\frac{2}{t} + \frac{3}{s} \leq \frac{19}{10}, \quad s \in \left[\frac{30}{19}, \frac{10}{3}\right], \\ &\frac{2}{t} + \frac{3}{s} \leq \frac{7}{4} + \frac{1}{2s}, \quad s \in \left(\frac{10}{3}, \infty\right]. \end{aligned}$

Then u is regular on (0, T), i.e. $\nabla u \in L^{\infty}_{loc}([0, T); L^2)$, $u \in L^2_{loc}(0, T; W^{2,2})$ and (subsequently) $u \in C^{\infty}_{loc}((0, T) \times R^3)$.

Throughout the paper we use several times the following special case of the Troisi inequality (see [16] or [17]): there exists a constant C > 0 such that for every $v \in C_0^{\infty}(\mathbf{R}^3)$

$$\|v\|_{6} \le C \prod_{i=1}^{3} \|\partial_{i}v\|_{2}^{\frac{1}{3}}.$$
(4)

Due to the density argument and the sufficient regularity of *u* this inequality can be applied to *u* from Theorem 1. We will also often use a special case of (4): $||v||_6 \le C ||\nabla v||_2$.

In the paper we denote $\int f(x) dx$ the integral over the whole three-dimensional space. We write L^p instead of $L^p(\mathbf{R}^3)$. C denotes a generic constant which can change from line to line.

2. Proof of Theorem 1

Proof of Theorem 1. Let $T^* = \sup\{\tau > 0; u \text{ is regular on } (0, \tau)\}$. Since $u_0 \in W_{\sigma}^{1,2}$, u is regular on some positive time interval and T^* is either equal to infinity (in which case the proof is finished) or it is a positive number and u is regular on $(0, T^*)$. It is sufficient to prove that $T^* \ge T$. We proceed by contradiction and suppose that $T^* < T$. We take $\varepsilon > 0$ sufficiently small (it will be made precise at the end of the proof of Theorem 1) and fix $T_1 \in (0, T^*)$ such that $T^* - T_1 < \varepsilon$ and $\int_{T_1}^{T^*} \|\nabla u(\tau)\|^2 d\tau < \varepsilon$. Taking arbitrarily $T_2 \in (T_1, T^*)$ the proof will be finished if we show that $\|\nabla u(T_2)\|_2 \le C < \infty$, where *C* is independent of T_2 . Actually, the standard extension argument then shows that the regularity of *u* can be extended beyond T^* and it is contradiction with the definition of T^* . We will use

$$J(T_2)^2 = \sup_{\tau \in (T_1, T_2)} \|\nabla_h(\tau)\|_2^2 + \int_{T_1}^{T_2} \|\nabla\nabla_h u(\tau)\|_2^2 d\tau$$

and

$$L(T_2)^2 = \sup_{\tau \in (T_1, T_2)} \|\partial_3 u(\tau)\|_2^2 + \int_{T_1}^{T_2} \|\nabla \partial_3 u(\tau)\|_2^2 d\tau.$$

Download English Version:

https://daneshyari.com/en/article/839835

Download Persian Version:

https://daneshyari.com/article/839835

Daneshyari.com