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a b s t r a c t

We improve a regularity criterion for the solutions to the Navier–Stokes equations in the
full three-dimensional space involving the gradient of one velocity component. Revising
the method used in Pokorný and Zhou (2009, 2010), we show that a weak solution u
is regular on (0, T ) provided that ∇u3 ∈ Lt(0, T ; Ls), where 2/t + 3/s = 19/10 for
s ∈ [30/19, 10/3] and 2/t + 3/s = 7/4 + 1/(2s) for s ∈ [10/3, ∞]. It improves the
known results for s ∈ [30/19, 150/77) and s ∈ (10/3, ∞].

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the Navier–Stokes equations in the full three-dimensional space, i.e.

∂u
∂t

− ∆u + u · ∇u + ∇p = 0 in R3
× (0, ∞), (1)

∇ · u = 0 in R3
× (0, ∞), (2)

u|t=0 = u0, (3)

where u = u(x, t) = (u1(x, t), u2(x, t), u3(x, t)) and p = p(x, t) denote the unknown velocity and pressure and
u0 = u0(x) = (u01(x), u02(x), u03(x)) is a given initial velocity.

It is known that for u0 ∈ L2σ (solenoidal functions from L2) the problem (1)–(3) possesses at least one global weak
solution u satisfying the energy inequality ∥u(t)∥2

2/2 +
 t
0 ∥∇u(τ )∥2

2 dτ ≤ ∥u0∥
2
2/2 for every t ≥ 0 (see [1] or [2]). If

u0 ∈ W 1,2
σ (solenoidal functions from the standard Sobolev space W 1,2) then u is known to be regular on some (possibly

small) time interval. It is a classical question to ask under which conditions u is regular on an interval (0, T ), T > 0,
i.e. ∇u ∈ L∞

loc([0, T ); L2), u ∈ L2loc(0, T ;W 2,2) and (subsequently) u ∈ C∞

loc((0, T ) × R3) (see [2]). There exist many criteria
in the literature ensuring the positive answer (see for example [3–11]). In this paper we are interested in criteria involving
the gradient of one velocity component ∇u3. It has not yet been reached in these criteria the level corresponding to the
natural scaling of the Navier–Stokes solutions, i.e. 2/t + 3/s = 2, in contrast, for example, with the situation in criteria
involving one direction derivative ∂3u, where the situation seems to be simpler (see [4,12]). Let us present several recent
results: it was proved by Pokorný in [13] that u is regular on (0, T ) provided that ∇u3 ∈ Lt(0, T ; Ls), 2/t + 3/s ≤ 3/2 and
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s ∈ [2, ∞]. In [12] Kukavica and Ziane presented the following criterion: ∇u3 ∈ Lt(0, T ; Ls), where 2/t + 3/s ≤ 11/6 and
s ∈ [54/23, 18/5]. Pokorný and Zhou (see [14,15]) improved the previous results and proved the regularity of u on (0, T )
under the condition that ∇u3 ∈ Lt(0, T ; Ls) and
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In this paper we will focus on the method used in [14,15]. The method cleverly combines the estimates of ∂3u and
∇hu = (∂1u, ∂2u). Nevertheless it seems that its potential has not yet been completely fulfilled. By adjusting it we will
be able to improve the results from [14,15] for s ∈ [30/19, 150/77) and s ∈ (10/3, ∞]. Thus, the basic message of this
short paper is the following one: it is not excluded that by some optimal application of the method one could get a criterion
corresponding to the natural scaling of the Navier–Stokes equations, i.e. 2/t+3/s = 2, or at least further improve the results
from [14,15] and Theorem 1. Theorem 1 sums up precisely our main result.

Theorem 1. Let u be a global weak solution to (1)–(3) corresponding to the initial condition u0 ∈ W 1,2
σ and satisfying the energy

inequality. Let T > 0, ∇u3 ∈ Lt(0, T ; Ls) and
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Then u is regular on (0, T ), i.e. ∇u ∈ L∞

loc([0, T ); L2), u ∈ L2loc(0, T ;W 2,2) and (subsequently) u ∈ C∞

loc((0, T ) × R3).

Throughout the paper we use several times the following special case of the Troisi inequality (see [16] or [17]): there
exists a constant C > 0 such that for every v ∈ C∞

0 (R3)

∥v∥6 ≤ C
3

i=1

∥∂iv∥

1
3
2 . (4)

Due to the density argument and the sufficient regularity of u this inequality can be applied to u from Theorem 1. We will
also often use a special case of (4): ∥v∥6 ≤ C∥∇v∥2.

In the paper we denote

f (x) dx the integral over the whole three-dimensional space. We write Lp instead of Lp(R3). C

denotes a generic constant which can change from line to line.

2. Proof of Theorem 1

Proof of Theorem 1. Let T ∗
= sup{τ > 0; u is regular on (0, τ )}. Since u0 ∈ W 1,2

σ , u is regular on some positive time
interval and T ∗ is either equal to infinity (in which case the proof is finished) or it is a positive number and u is regular
on (0, T ∗). It is sufficient to prove that T ∗

≥ T . We proceed by contradiction and suppose that T ∗ < T . We take ε > 0
sufficiently small (it will be made precise at the end of the proof of Theorem 1) and fix T1 ∈ (0, T ∗) such that T ∗

− T1 < ε

and
 T∗

T1
∥∇u(τ )∥2dτ < ε. Taking arbitrarily T2 ∈ (T1, T ∗) the proof will be finished if we show that ∥∇u(T2)∥2 ≤ C < ∞,

where C is independent of T2. Actually, the standard extension argument then shows that the regularity of u can be extended
beyond T ∗ and it is contradiction with the definition of T ∗. We will use

J(T2)2 = sup
τ∈(T1,T2)

∥∇h(τ )∥2
2 +

 T2

T1
∥∇∇hu(τ )∥2

2 dτ

and

L(T2)2 = sup
τ∈(T1,T2)

∥∂3u(τ )∥2
2 +

 T2

T1
∥∇∂3u(τ )∥2

2 dτ .
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