On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component

Zdeněk Skalák

Czech Technical University, Prague, Thákurova 7, 16629 Prague 6, Czech Republic

ARTICLE INFO

Article history:

Received 15 December 2013
Accepted 24 March 2014
Communicated by Enzo Mitidieri

MSC:

35Q30
76D05

Keywords:

Navier-Stokes equations
Regularity of solutions
Regularity criteria

Abstract

We improve a regularity criterion for the solutions to the Navier-Stokes equations in the full three-dimensional space involving the gradient of one velocity component. Revising the method used in Pokorný and Zhou (2009, 2010), we show that a weak solution u is regular on $(0, T)$ provided that $\nabla u_{3} \in L^{t}\left(0, T ; L^{s}\right)$, where $2 / t+3 / s=19 / 10$ for $s \in[30 / 19,10 / 3]$ and $2 / t+3 / s=7 / 4+1 /(2 s)$ for $s \in[10 / 3, \infty]$. It improves the known results for $s \in[30 / 19,150 / 77)$ and $s \in(10 / 3, \infty]$. © 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the Navier-Stokes equations in the full three-dimensional space, i.e.

$$
\begin{align*}
& \frac{\partial u}{\partial t}-\Delta u+u \cdot \nabla u+\nabla p=0 \quad \text { in } \mathbf{R}^{3} \times(0, \infty) \tag{1}\\
& \nabla \cdot u=0 \quad \text { in } \mathbf{R}^{3} \times(0, \infty) \tag{2}\\
& \left.u\right|_{t=0}=u_{0} \tag{3}
\end{align*}
$$

where $u=u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ and $p=p(x, t)$ denote the unknown velocity and pressure and $u_{0}=u_{0}(x)=\left(u_{01}(x), u_{02}(x), u_{03}(x)\right)$ is a given initial velocity.

It is known that for $u_{0} \in L_{\sigma}^{2}$ (solenoidal functions from L^{2}) the problem (1)-(3) possesses at least one global weak solution u satisfying the energy inequality $\|u(t)\|_{2}^{2} / 2+\int_{0}^{t}\|\nabla u(\tau)\|_{2}^{2} d \tau \leq\left\|u_{0}\right\|_{2}^{2} / 2$ for every $t \geq 0$ (see [1] or [2]). If $u_{0} \in W_{\sigma}^{1,2}$ (solenoidal functions from the standard Sobolev space $W^{1,2}$) then u is known to be regular on some (possibly small) time interval. It is a classical question to ask under which conditions u is regular on an interval $(0, T), T>0$, i.e. $\nabla u \in L_{l o c}^{\infty}\left([0, T) ; L^{2}\right), u \in L_{l o c}^{2}\left(0, T ; W^{2,2}\right)$ and (subsequently) $u \in C_{l o c}^{\infty}\left((0, T) \times R^{3}\right)$ (see [2]). There exist many criteria in the literature ensuring the positive answer (see for example [3-11]). In this paper we are interested in criteria involving the gradient of one velocity component ∇u_{3}. It has not yet been reached in these criteria the level corresponding to the natural scaling of the Navier-Stokes solutions, i.e. $2 / t+3 / s=2$, in contrast, for example, with the situation in criteria involving one direction derivative $\partial_{3} u$, where the situation seems to be simpler (see [4,12]). Let us present several recent results: it was proved by Pokorný in [13] that u is regular on $(0, T)$ provided that $\nabla u_{3} \in L^{t}\left(0, T ; L^{s}\right), 2 / t+3 / s \leq 3 / 2$ and

[^0]$s \in[2, \infty]$. In [12] Kukavica and Ziane presented the following criterion: $\nabla u_{3} \in L^{t}\left(0, T ; L^{s}\right)$, where $2 / t+3 / s \leq 11 / 6$ and $s \in[54 / 23,18 / 5]$. Pokorný and Zhou (see [14,15]) improved the previous results and proved the regularity of u on $(0, T)$ under the condition that $\nabla u_{3} \in L^{t}\left(0, T ; L^{s}\right)$ and
\[

$$
\begin{aligned}
& \frac{2}{t}+\frac{3}{s} \leq \frac{19}{12}+\frac{1}{2 s}, \quad s \in\left(\frac{30}{19}, \frac{90}{49}\right] \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{53}{18}-\frac{2}{s}, \quad s \in\left(\frac{90}{49}, \frac{54}{29}\right], \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{61}{24}-\frac{5}{4 s}, \quad s \in\left(\frac{54}{29}, 2\right), \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{23}{12}, \quad s \in[2,3), \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{7}{4}+\frac{1}{2 s}, \quad s \in\left[3, \frac{10}{3}\right), \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{3}{2}+\frac{4}{3 s}, \quad s \in\left[\frac{10}{3}, \infty\right) .
\end{aligned}
$$
\]

In this paper we will focus on the method used in [14,15]. The method cleverly combines the estimates of $\partial_{3} u$ and $\nabla_{h} u=\left(\partial_{1} u, \partial_{2} u\right)$. Nevertheless it seems that its potential has not yet been completely fulfilled. By adjusting it we will be able to improve the results from $[14,15]$ for $s \in[30 / 19,150 / 77)$ and $s \in(10 / 3, \infty]$. Thus, the basic message of this short paper is the following one: it is not excluded that by some optimal application of the method one could get a criterion corresponding to the natural scaling of the Navier-Stokes equations, i.e. $2 / t+3 / s=2$, or at least further improve the results from $[14,15]$ and Theorem 1 . Theorem 1 sums up precisely our main result.

Theorem 1. Let u be a global weak solution to (1)-(3) corresponding to the initial condition $u_{0} \in W_{\sigma}^{1,2}$ and satisfying the energy inequality. Let $T>0, \nabla u_{3} \in L^{t}\left(0, T ; L^{s}\right)$ and

$$
\begin{aligned}
& \frac{2}{t}+\frac{3}{s} \leq \frac{19}{10}, \quad s \in\left[\frac{30}{19}, \frac{10}{3}\right] \\
& \frac{2}{t}+\frac{3}{s} \leq \frac{7}{4}+\frac{1}{2 s}, \quad s \in\left(\frac{10}{3}, \infty\right] .
\end{aligned}
$$

Then u is regular on $(0, T)$, i.e. $\nabla u \in L_{l o c}^{\infty}\left([0, T) ; L^{2}\right), u \in L_{l o c}^{2}\left(0, T ; W^{2,2}\right)$ and (subsequently) $u \in C_{l o c}^{\infty}\left((0, T) \times R^{3}\right)$.
Throughout the paper we use several times the following special case of the Troisi inequality (see [16] or [17]): there exists a constant $C>0$ such that for every $v \in C_{0}^{\infty}\left(\mathbf{R}^{3}\right)$

$$
\begin{equation*}
\|v\|_{6} \leq C \prod_{i=1}^{3}\left\|\partial_{i} v\right\|_{2}^{\frac{1}{3}} \tag{4}
\end{equation*}
$$

Due to the density argument and the sufficient regularity of u this inequality can be applied to u from Theorem 1 . We will also often use a special case of (4): $\|v\|_{6} \leq C\|\nabla v\|_{2}$.

In the paper we denote $\int f(x) d x$ the integral over the whole three-dimensional space. We write L^{p} instead of $L^{p}\left(\mathbf{R}^{3}\right)$. C denotes a generic constant which can change from line to line.

2. Proof of Theorem 1

Proof of Theorem 1. Let $T^{*}=\sup \{\tau>0 ; u$ is regular on $(0, \tau)\}$. Since $u_{0} \in W_{\sigma}^{1,2}, u$ is regular on some positive time interval and T^{*} is either equal to infinity (in which case the proof is finished) or it is a positive number and u is regular on $\left(0, T^{*}\right)$. It is sufficient to prove that $T^{*} \geq T$. We proceed by contradiction and suppose that $T^{*}<T$. We take $\varepsilon>0$ sufficiently small (it will be made precise at the end of the proof of Theorem 1) and fix $T_{1} \in\left(0, T^{*}\right)$ such that $T^{*}-T_{1}<\varepsilon$ and $\int_{T_{1}}^{T^{*}}\|\nabla u(\tau)\|^{2} d \tau<\varepsilon$. Taking arbitrarily $T_{2} \in\left(T_{1}, T^{*}\right)$ the proof will be finished if we show that $\left\|\nabla u\left(T_{2}\right)\right\|_{2} \leq C<\infty$, where C is independent of T_{2}. Actually, the standard extension argument then shows that the regularity of u can be extended beyond T^{*} and it is contradiction with the definition of T^{*}. We will use

$$
J\left(T_{2}\right)^{2}=\sup _{\tau \in\left(T_{1}, T_{2}\right)}\left\|\nabla_{h}(\tau)\right\|_{2}^{2}+\int_{T_{1}}^{T_{2}}\left\|\nabla \nabla_{h} u(\tau)\right\|_{2}^{2} d \tau
$$

and

$$
L\left(T_{2}\right)^{2}=\sup _{\tau \in\left(T_{1}, T_{2}\right)}\left\|\partial_{3} u(\tau)\right\|_{2}^{2}+\int_{T_{1}}^{T_{2}}\left\|\nabla \partial_{3} u(\tau)\right\|_{2}^{2} d \tau
$$

https://daneshyari.com/en/article/839835

Download Persian Version:

https://daneshyari.com/article/839835

Daneshyari.com

[^0]: E-mail address: skalak@mat.fsv.cvut.cz.
 http://dx.doi.org/10.1016/j.na.2014.03.018
 0362-546X/© 2014 Elsevier Ltd. All rights reserved.

