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a b s t r a c t

Weconsider the uniqueness of radial solutions for the semilinear elliptic equation−∆Hdu+
λu − up+1

= 0 on hyperbolic space Hd. The proof is based on suitable transformations,
energy functions and an idea of Yanagida. A similar approach was used by Kwong and Li.
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1. Introduction

We consider the uniqueness of radial solutions for the semilinear elliptic equation on d-dimensional hyperbolic space Hd

−∆Hdu + λu − up+1
= 0, x ∈ Hd, (1.1)

where∆Hd is the Laplace–Beltrami operator on Hd, λ > −
(d−1)2

4 , 0 < p < 4
d−2 and u : Hd

→ R is a positive radial function
with suitable decay at infinity.

Eq. (1.1) is related to solitary waves of nonlinear Schrödinger equation on Hd. Indeed, consider the following NLS

ivt +∆Hdv = |v|pv, (t, x) ∈ (0, T )× Hd. (1.2)

If v(t, x) = eiλtu(x) is a solution of (1.2), then u satisfies (1.1). More results for NLS onHd, see [1–3]. Concerning the existence
of solutions to (1.1), Christianson and Marzuola proved the following.

Theorem 1 (Theorem 1 and Lemma 6.1 of [4]). For d ≥ 2, λ > −
(d−1)2

4 and 0 < p < 4
d−2 , there exists a positive, radial and

decreasing solution u ∈ H1(Hd) ∩ C2(Hd) satisfying (1.1).

Mancini and Sandeep in an earlier paper [5] showed the following existence and uniqueness results.

Theorem 2 (Theorems 1.3 and 1.4 of [5]). Let p > 0 if d = 2 and 0 < p < 4
d−2 if d ≥ 3. Then (1.1) has a positive entire solution

for λ ≥ −
(d−1)2

4 . Let λ ≥ −
(d−1)2

4 if d ≥ 3 and λ > −
2(p+2)
(p+4)2

if d = 2. Then (1.1) has at most one entire positive solution, up to
hyperbolic isometries.
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Here we call a positive solution of the problem (1.1) to be an entire solution if it belongs to the closure of C∞

0 (H
d) with

respect to the norm (the norm is equivalent to the H1(Hd) norm for λ > −
(n−1)2

4 , see [5])

∥u∥λ :=


Hd
(|∇Hdu|2 + λ|u|2) dx

1/2
for u ∈ C∞

0 (H
d).

Remark 1.1. For the non-existence parts of (1.1), Theorem1.1 in [5] shows that there do not exist positive solutions in d ≥ 2
and λ < −

(d−1)2

4 and there do not exist positive solutions in H1(Hd) for λ = −
(d−1)2

4 . [5] also contains partial existence and
non-existence results of (1.1) on the critical case, e.g., p =

2
d−2 , please see Section 1 of [5] for more details.

The aim of this paper is to give a different proof for the uniqueness result of [5] in a special case. We have the following
result.

Theorem 3. For d ≥ 3, λ ≥ −
(d−1)2

4 +
1
4 and 0 < p < 4

d−2 , Eq. (1.1) has a unique positive solution u ∈ H1(Hd), up to
hyperbolic isometries.

Remark 1.2. Since positive solutions are radial (see Theorem 2.1 in [5]), we need only to prove uniqueness for radial
solutions.

Remark 1.3. Since d ≥ 3, the range for λ includes positive part of real line, which is analogous to the classical result of
Euclidean case that has been proved by Kwong in [6].

Outline of the proof. First we reduce Eq. (1.1) to an equation on Rd. Since we consider the radial solution, the uniqueness
of solutions to (1.1) is equivalent to the problem for an ODE (see, (1.5)), for which we argue by contradiction. Assume that
R1 and R2 are two distinct positive solutions of (1.5). Then one of the following cases occurs:

• Case 1. R1 and R2 intersect infinitely many times.
• Case 2. R1 and R2 intersect at most finite times.

– Subcase 2.1. R1 and R2 do not intersect (intersect 0 times).
– Subcase 2.2. R1 and R2 intersect more than once.
– Subcase 2.3. R1 and R2 intersect only once.

Thus, it suffices to rule out the above scenarios. We will rule out these cases by transformations, energy identity and an idea
of Yanagida [7], whichwas used by Kwong and Li in [8] to deal with semilinear problems posed onRd with general boundary
conditions. The key tool is an exponential decay estimate (see Proposition 1).

1.1. Hyperbolic space and reduction to an Euclidean case

In this subsection we briefly recall the definition of hyperbolic space and the main steps of reduction of (1.1) to an
equation on Rd. For more details, please refer to [4].

There are several models of hyperbolic space, we shall use the upper hyperboloid model. Denote

Hd
= {x = (x0, x1, . . . , xd) ∈ Rd+1

| [x, x] = 1, x0 > 0},

where [x, y] = x0y0 − · · · − xnyn. Using the polar coordinate,

Hd
= {(cosh r, sinh rω) ∈ Rd+1

| r > 0, ω ∈ Sd−1
},

one can obtain the following expression of∆Hd :

∆Hd = ∂2r + (d − 1)
cosh r
sinh r

∂r +
1

sinh2 r
∆Sn−1 . (1.3)

The metric on Hd is given by

ds2 = dr2 + sinh2 rdω2,

and the integration of function f on Hd is
Hd

f (x) dx =


∞

0


Sd−1

f (r, ω) sinhd−1 r dr dω.

Here Sd−1
= {ω ∈ Rd

| |ω| = 1} is the unit sphere on Rd and dω2 is the metric on the sphere Sd−1.
The Sobolev space H1(Hd) is defined by

H1(Hd) = {f ∈ L2(Hd) | |∇Hd f | ∈ L2(Hd)}
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