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a b s t r a c t

We consider the Hardy constant associated with a domain in the n-dimensional Euclidean
space and we study its variation upon perturbation of the domain. We prove a Fréchet
differentiability result and establish a Hadamard-type formula for the corresponding
derivatives. We also prove a stability result for the minimizers of the Hardy quotient.
Finally, we prove stability estimates in terms of the Lebesgue measure of the symmetric
difference of domains.
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1. Introduction

LetΩ be a bounded domain in Rn, dΩ(x) = dist(x, ∂Ω), x ∈ Ω , and p ∈]1,∞[. If there exists c > 0 such that
Ω

|∇u|pdx ≥ c

Ω

|u|p

dpΩ
dx, for all u ∈ C∞

c (Ω), (1.1)

we then say that the Lp Hardy inequality holds inΩ . The best constant c for inequality (1.1) is called the Lp Hardy constant
ofΩ and we shall denote it by Hp(Ω). It is well-known that ifΩ is regular enough then the Lp Hardy inequality is valid for
all p ∈]1,∞[; moreover ifΩ is convex, and more generally if it is weakly mean convex, i.e. if1dΩ ≤ 0 in the distributional
sense inΩ , then Hp(Ω) = ((p − 1)/p)p.

The study of inequality (1.1) has a long history which goes back to Hardy himself, see [1]. In the last twenty years there
has been a growing interest in the study of Hardy inequalities, the existence and behavior of minimizers [2,3], improved
inequalities [4,5], higher order analogues and other related problems.

The precise evaluation of Hp(Ω) for domains Ω that are not weakly mean convex is a difficult problem. There are only
few examples of such domains for whichHp(Ω) is known and these are only for the case p = 2 and for very special domains
Ω . Even the problem of estimating from below Hp(Ω) is difficult and most results again are for p = 2. One such result is
the well known theorem by A. Ancona which states that H2(Ω) ≥ 1/16 for all simply connected planar domains. We refer
to [6,2,5,7–10] for more information on the Hardy constant.
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In this paper we study the variation of Hp(Ω) upon variation of the domain Ω . This problem can be considered as a
spectral perturbation problem. Indeed, if there exists a minimizer u ∈ W 1,p

0 (Ω) for the Hardy quotient associated with (1.1)
then u is a solution to the equation

−∆pu = Hp(Ω)
|u|p−2u
dpΩ

(1.2)

where ∆pu = div(|∇u|p−2
∇u) is the p-Laplacian. Domain perturbation problems have been extensively studied in the

case of the Dirichlet Laplacian as well as for more general elliptic operators, such as operators satisfying other boundary
conditions, higher order operators and operators with variable coefficients. We refer to the monographs [11,12] for an
introduction to this topic. When studying such problems, there are broadly speaking two types of results: qualitative and
quantitative. The former provide information such as continuity or analyticity, while the second involve stability properties,
possibly together with related estimates. The relevant literature is vast, and we refer to [13–17] and references therein for
more information; in particular, for the p-Laplacian we refer to [18–20].

In this paper we obtain both qualitative and quantitative results on the domain dependence of Hp(Ω). In Theorem 8, we
assume that Ω is of class C2 with Hp(Ω) < ((p − 1)/p)p and we establish the Fréchet differentiability of Hp(φ(Ω)) with
respect to the C2 diffeomorphism φ. In particular we provide a Hadamard-type formula for the Fréchet differential. For our
proof we make an essential use of certain results of [2], where it was shown in particular that if Hp(Ω) < ((p− 1)/p)p then
the Hardy quotient admits a positive minimizer uwhich behaves like dαΩ near ∂Ω for a suitable α > 0. In fact, in Theorem 6
we also prove the stability of the minimizer u in W 1,p

0 (Ω); this is of independent interest but is also used in the proof of
Theorem 8.

We subsequently consider stability estimates for Hp(Ω). In Theorem 11 we prove under certain assumptions that the
Hardy constant Hp(Ω) of a C2 domain Ω is upper semicontinuous with respect to bi-Lipschitz transformations φ. In
Theorem 12 we consider the stability of the Hardy constant whenΩ is subject to a localized perturbation which transforms
it to a domain Ω̃ . Assuming that both Ω and Ω̃ are of class C2 we obtain stability estimates for the Lp Hardy constant in
terms of the Lebesgue measure of the symmetric difference Ω△Ω̃ . Estimates of this type have been recently obtained for
eigenvalues of various classes of operators; we refer to [21,14,13] and references therein for more information.

We finally note that our results are new also for the linear case p = 2.
The paper is organized as follows. In Section 2 we introduce our notation and prove a general Lipschitz continuity result.

Section 3 is devoted to the proof of differentiability results, the Hadamard formula and the stability of minimizers. In
Section 4 we prove stability estimates in terms of the Lebesgue measure of the symmetric difference of the domains.

2. Preliminaries

Let Ω be a bounded domain (i.e. a bounded connected open set) in Rn. Given p ∈]1,+∞[ we denote by W 1,p
0 (Ω) the

closure in the standard Sobolev spaceW 1,p(Ω) of the set of all smooth functions with compact support inΩ .
If u ∈ W 1,p

0 (Ω), u ≠ 0, we then denote by RΩ [u] the Rayleigh quotient

RΩ,p[u] =


Ω

|∇u|pdx
Ω

|u|p

dpΩ
dx

,

and we set
Hp(Ω) = inf

u∈W1,p
0 (Ω),u≠0

RΩ,p[u]. (2.1)

If Hp(Ω) > 0 we then say that the Lp Hardy inequality is valid onΩ .
It is well known that ifΩ has a Lipschitz continuous boundary then 0 < Hp(Ω) ≤ ((p − 1)/p)p and it has been proved

in [2,3] that ifΩ is of class C2 then there exists a minimizer u in (2.1) if and only if Hp(Ω) < ((p − 1)/p)p; moreover, such
minimizer is unique up to a multiplicative constant, can be chosen to be positive and there exists c > 0 such that

c−1dΩ(x)α ≤ u(x) ≤ cdΩ(x)α, x ∈ Ω, (2.2)
where α > (p − 1)/p is the largest solution to the equation

(p − 1)αp−1(1 − α) = Hp(Ω). (2.3)
Given a Lipschitz map φ : Ω → φ(Ω) we define Lip(φ) = ∥∇φ∥L∞(Ω). For L > 0 we define the uniform class of

bi-Lipschitz maps
bLipL(Ω) = {φ : Ω → φ(Ω) : φ, φ(−1) are Lipschitz continuous and Lip(φ), Lip(φ(−1)) ≤ L }.

In the sequel we shall often use the fact that Hp(φ(Ω)) depends continuously on φ. In fact, we can prove the following
Lipschitz continuity result.

Note that in the proof of the following proposition as well as in the proofs of other statements in the sequel, by c, c1 etc.
we shall denote constants, the value of which may change from line to line.
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