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a b s t r a c t

In this article we define variable exponent Bergman spaces and show that polynomials are
dense in the spaces. We also show that the Bergman projection and the Berezin transform
are bounded in these spaces.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Variable Lebesgue spaces are a generalization of Lebesgue spaces where we allow the exponent to be a measurable func-
tion and thus the exponent may vary. It seems that the first occurrence in the literature is in the 1932 paper of Orlicz [1].
The seminal work on this field is the 1991 paper of Kováčik and Rákosník [2] where many basic properties of Lebesgue and
Sobolev spaces were shown. To see a more detailed history of such spaces see, e.g., [3, Section 1.1]. These variable expo-
nent function spaces have a wide variety of applications, e.g., in the modeling of electrorheological fluids [4–7] as well as
thermorheological fluids [8], in the study of image processing [9–15] and in differential equations and minimization prob-
lemswith non-standard growth [16–18]. For details on variable Lebesgue spaces one can refer to [19,3,2] and the references
therein.

Let D denote the open unit disk in the complex plane and dA the normalized Lebesgue measure on D. For a given
1 6 p < ∞ define the Bergman space Ap(D) as the space of all analytic functions on D that satisfy:

∥f ∥p
Ap :=


D

|f (z)|pdA(z) < ∞.

The theory of Bergman spaces was introduced by S. Bergman in [20] and since the 1990s it has gained a lot of attention
mainly due to some major breakthroughs at the time. For details on the theory of Bergman spaces we refer to the books
[21,22] and the references therein.

In this article we will define variable exponent Bergman spaces and show some fundamental properties. We consider
this to be an interesting topic since the classical approach to Bergman spaces seems to fail in the variable framework.
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To circumvent this problem, we rely on techniques from real harmonic analysis, variable exponent spaces and complex
function theory. The article is distributed as follows. In Section 2 we give some basic notions on variable exponent Lebesgue
spaces that will be used. We also define variable exponent Bergman spaces and show that under suitable conditions on the
exponent, they are Banach spaces. In Section 3, to deal with the problem of approximation in the variable exponent Bergman
spaces, we introduce the concept of mollified dilations and show some of its properties. In Section 4 we study the Bergman
projection and show it remains bounded in the case of variable exponent Bergman spaces. We also address the problem of
duality in this setting.

For the rest of the paper, we will use the notation a . b if there exists a constant C > 0 such that a 6 Cb. Similarly, we
use a ∼ b if a . b and b . a.

2. Basic notions

2.1. On Lebesgue spaces with variable exponent

The basics on variable Lebesgue spaces may be found in the monographs [19,3], but we recall here some necessary
definitions and propositions. For Ω ⊂ Rd we put p+

Ω := ess supx∈Ωp(x) and p−

Ω := ess infx∈Ωp(x); we use the abbreviations
p+

= p+

Ω and p−
= p−

Ω when there is no danger of confusion. For a measurable function p : Ω → [1, ∞), we call it a
variable exponent, and define the set of all variable exponents with p+ < ∞ as P(Ω).

For a complex-valued measurable function ϕ : Ω → C we define themodular ρp(·) by

ρp(·)(ϕ) :=


Ω

|ϕ(x)|p(x) dx

and the Luxemburg–Nakano norm by

∥ϕ∥Lp(·)(Ω) := inf

λ > 0 : ρp(·)

ϕ

λ


6 1


. (1)

Definition 2.1. Let p ∈ P(Ω). The variable Lebesgue space Lp(·)(Ω) is introduced as the set of all complex-valuedmeasurable
functions ϕ : Ω → C for which the modular is finite, i.e. ρp(·)(ϕ) < ∞. Equipped with the Luxemburg–Nakano norm (1)
this is a Banach space.

Proposition 2.2 (Hölder’s inequality, See Theorem 2.26 in [19]). Let p ∈ P(Ω), f ∈ Lp(·)(Ω) and g ∈ Lp
′(·)(Ω), where

1/p′(x) + 1/p(x) = 1. Then fg ∈ L1(Ω) and
Ω

|f (x)g(x)|dx 6 2∥f ∥Lp(·)(Ω)∥g∥Lp′(·)(Ω)
.

Proposition 2.3 (Theorem 2.80 in [19]). Let p ∈ P(Ω), then the dual space to Lp(·)(Ω) is Lp
′(·)(Ω) (up to an isomorphism),

where 1/p′(x) + 1/p(x) = 1.

It is known, see [19, Theorem 2.34], that the Luxemburg–Nakano norm (1) of Lp(·)(Ω) is equivalent to the following norm

|||f |||Lp(·)(Ω) = sup
∥g∥

Lp′(·)(Ω)
61


Ω

f (x)g(x)dx,

i.e.
|||f |||Lp(·)(Ω) ∼ ∥f ∥Lp(·)(Ω). (2)

Weneed to impose some regularity in the variable exponent in order to have some ‘‘fruitful’’ theory (e.g. the boundedness
of the maximal operator).

Definition 2.4. A function p : Ω → R is said to be locally log-Hölder continuous on Ω if there exists a positive constant C
such that

|p(x) − p(y)| 6
C

log (e + 1/|x − y|)
, (3)

for all x, y ∈ Ω .We denote byP log(Ω) the set of all locally log-Hölder continuous functions inΩ forwhich 1<p− 6p+ <∞.

One essential tool that we will use is the so-called maximal operator.

Definition 2.5. Given a function f ∈ L1loc(Ω), the Hardy–Littlewood maximal function of f , denote by Mf , is defined for any
x ∈ Rn by

Mf (x) := sup
r>0

1
|B(x, r)|


B(x,r)

|f (y)|dy. (4)
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