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a b s t r a c t

In this paper a one-dimensional generalized Boussinesq equation

utt − uxx + (u3
+ uxx)xx = 0

with hinged boundary conditions is considered. It is proved that the above equation admits
small-amplitude quasi-periodic solutions corresponding to finite dimensional invariant
tori of an associated infinite dimensional Hamiltonian system. The proof is based on an
infinite dimensional KAM theorem and the Birkhoff normal form.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In 1870s, Boussinesq first explained the phenomena of Scott Russell’s solitary wavemathematically [1–3]. Bymotivation
of Euler’s equation for two-dimensional, inviscid, irrotational flow beneath a free surface, Boussinesq introduced approxi-
mations appropriate for long waves of small amplitude and derived the well-known Boussinesq equation:

utt − uxx −
3
2
ϵ(u2)xx −

ϵ

3
uxxxx = 0, x ∈ R. (BQ)

Eq. (BQ) describes waves moving basically in one direction, for which ut + ux = O(ϵ), and it gives a satisfactory descrip-
tion of steady long waves of small amplitude. The most interesting feature of this equation is that it possesses solitary
wave solutions and admits an associated inverse scattering formalism [4–6]. One could find that the dispersion relation
ω2

= k2 −
1
3ϵk

4 leads to an unbounded growth rate for high frequency and the initial value problem is linearly ill posed.
Instead of this classical Boussinesq equation, some authors considered a variant [7]:

utt − uxx + uxxxx + f (u)xx = 0, x ∈ R. (BQ1)

Linear plane waves eikx−iωt of Eq. (BQ1) have the dispersion relation ω2
= k2 + k4, this ensures that the initial value prob-

lem is linearly well posed. When f (u) = u2, Zakharov [6] derived Eq. (BQ1) as a model of a nonlinear string. Helfrich and
Pedlodky [8] obtained the same equation when they applied asymptotic time-dependent theory for coherent structures to
a marginally stable baroclinic zonal flow. Moreover, Eq. (BQ1) also describes a model in the study of phase transition in
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shape-memory alloys [9] with the nonlinearity f (u) = 4u3
−6u5, and appears in the study of anharmonic lattice waves [10]

with a more general polynomial nonlinearity f .
These important models draw many authors’ attentions to (BQ1) and there have been many significant results. For

example, Bona and Sachs [7] proved the global existence of smooth solutions and stability of solitary waves for (BQ1) with
f (u) = u2. For general nonlinearities f , also see Refs. [11–16].

We note that in the previous papers the spatial variable x ∈ R. In this paper, we restrict x to the interval [0, π] and
consider the 1-D generalized Boussinesq equation (BQ1) with f (u) = u3 under the hinged boundary conditions:

utt − uxx + uxxxx + f (u)xx = 0
u(0, t) = u(π, t) = uxx(0, t) = uxx(π, t) = 0. (1.1)

It is well known that the problem (1.1) of a generalized Boussinesq equation possesses Hamiltonian structure. Moreover,
with the hinged boundary conditions of (1.1) the linear operator Lu = −uxx + uxxxx only has discrete spectrum with
some asymptotically increasing property. This important information reminds us of KAM theory for an infinite dimensional
Hamiltonian system.

Kuksin [17] first proposed an infinite dimensional KAM Theorem, which can be applied to some PDEs such as 1-D wave
equations and 1-D Schrödinger equations. Later, many well known KAM Theorems are obtained for Hamiltonian PDEs;
see [18–27] and references therein. We note that the previous papers concerned simple normal frequencies. In 2000,
Chierchia and You [28] developed a method for multiple normal frequencies and applied it to 1D wave equations under
the periodic boundary condition. Then, by means of decay property and momentum conservation, Geng and You [29]
proved a KAM theorem for Hamiltonian PDEs in higher dimensional space. Later, Eliasson and Kuksin [21] proposed the
Töplitz–Lipschitz structure, by which they successfully gave an infinite dimensional KAM theorem for higher dimensional
Schrödinger equations. A similar property named Quasi-Töplitz was observed by Procesi and Xu [30].

As we know, to make the KAM machine work fluently, a parameter family is required. However, many Hamiltonian
PDEs either have no outer parameters or do not have enough. A powerful tool to explore the parameters for these PDEs is
the normal form method. This idea was first introduced by Kuksin and Pöschel [31,23]. Then, with this technique, many
important results are obtained [32,33,27,34].

An alternative method is developed by Craig, Wayne and Bourgain, usually called the C–W–B method, which is based
on Lyapunov–Schmidt decomposition [35–40]. However, this method does not provide any information on the stability of
corresponding invariant tori like the KAMmethod.

The rest of this paper is organized as follows. In Section 2 we reduce (1.1) to an infinite dimensional Hamiltonian system
and state our main result. Then we discuss the regularity of Hamiltonian vector field in Section 3 and obtain the Birkhoff
normal form in Section 4. In Section 5 we state a well known Cantor manifold theorem and then use it to prove our main
result in Section 6. In the Appendix some preliminary results on Poisson bracket are given.

2. Hamiltonian structure and the main result

We first formally introduce the Hamiltonian structure of (1.1). Let ut = vx, Eq. (1.1) is equivalent to
ut = vx
vt = ∂x(u − uxx − f (u)). (2.1)

Let P = H1
0 ([0, π])× L2([0, π]), g(u) =

 u
0 f (s)ds, it is easy to see

H(w) =

 π

0

u2

2
+
v2

2
+

u2
x

2
− g(u)dx

is well defined forw = (u, v) ∈ P with u ∈ H1
0 ([0, π]), v ∈ L2([0, π]).

Let

J =


0 ∂x
∂x 0


be a weak derivative operator with respect to the L2 inner product on the space L2([0, π]) × L2([0, π]). It is defined in the
following sense:
forw(x) = (u(x), v(x)) ∈ L2([0, π])× L2([0, π]), we define

(Jw, z) = −

 π

0
⟨w, Jz⟩ dx = −

 π

0
v(x)φ′(x)+ u(x)ψ ′(x)dx,

for any z(x) = (φ(x), ψ(x)) ∈ C∞

0 (0, π)× C∞

0 (0, π).
Denote by ∇wH the weak derivative of H with respect to the L2-inner product. Then Eq. (2.1) can be written in a more

compact form

dw
dt

= J∇wH. (2.2)
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