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a b s t r a c t

We study turnpike properties of approximate solutions of nonautonomous discrete-time
optimal control systems which are determined by sequences of lower semicontinuous ob-
jective functions. To have these properties means that the approximate solutions of the
problems are determined mainly by the objective functions, and are essentially indepen-
dent of the choice of intervals and endpoint conditions, except in regions close to the end-
points. We show that these turnpike properties are stable under small perturbations of the
objective functions.
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1. Introduction

The study of the existence, the structure and properties of (approximate) solutions of optimal control problems defined
on infinite intervals and on sufficiently large intervals has recently been a rapidly growing area of research [1–15]. These
problems arise in engineering [16,17], in models of economic growth [18–24,15,25–27], in infinite discrete models of solid-
state physics related to dislocations in one-dimensional crystals [28,29], in the calculus of variations on time scales [30,31]
and in the theory of thermodynamical equilibrium for materials [32,33].

In this paper we study the structure of approximate solutions of nonautonomous discrete-time optimal control systems
arising in economic dynamics which are determined by sequences of lower semicontinuous objective functions.

For each nonempty set Y denote by B(Y ) the set of all bounded functions f : Y → R1 and for each f ∈ B(Y ) set

∥f ∥ = sup{|f (y)| : y ∈ Y }.

For each nonempty compact metric space Y denote by C(Y ) the set of all continuous functions f : Y → R1.
Let (X, ρ) be a compact metric space with the metric ρ. The set X × X is equipped with the metric ρ1 defined by

ρ1((x1, x2), (y1, y2)) = ρ(x1, y1) + ρ(x2, y2), (x1, x2), (y1, y2) ∈ X × X .

For each integer t ≥ 0 let Ωt be a nonempty closed subset of the metric space X × X .
Let T ≥ 0 be an integer. A sequence {xt}∞t=T ⊂ X is called a program if (xt , xt+1) ∈ Ωt for all integers t ≥ T .
Let T1, T2 be integers such that 0 ≤ T1 < T2. A sequence {xt}

T2
t=T1

⊂ X is called a program if (xt , xt+1) ∈ Ωt for all integers
t satisfying T1 ≤ t < T2.
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We assume that there exists a program {xt}∞t=0. Denote by M the set of all sequences of functions {ft}∞t=0 such that for
each integer t ≥ 0

ft ∈ B(Ωt) (1.1)

and that

sup{∥ft∥ : t = 0, 1, . . .} < ∞. (1.2)

For each pair of sequences {ft}∞t=0, {gt}
∞

t=0 ∈ M set

d({ft}∞t=0, {gt}
∞

t=0) = sup{∥ft − gt∥ : t = 0, 1, . . .}. (1.3)

It is easy to see that d : M × M → [0, ∞) is a metric on M and that the metric space (M, d) is complete.
Let {ft}∞t=0 ∈ M. We consider the following optimization problems

T2−1
t=T1

ft(xt , xt+1) → min s. t. {xt}
T2
t=T1

is a program,

T2−1
t=T1

ft(xt , xt+1) → min s. t. {xt}
T2
t=T1

is a program and xT1 = y,

T2−1
t=T1

ft(xt , xt+1) → min s. t. {xt}
T2
t=T1

is a program and xT1 = y, xT2 = z,

where y, z ∈ X and integers T1, T2 satisfy 0 ≤ T1 < T2.
The interest in these discrete-timeoptimal problems stems from the study of various optimization problemswhich can be

reduced to this framework, e.g., continuous-time control systems which are represented by ordinary differential equations
whose cost integrand contains a discounting factor [20], the study of the discrete Frenkel–Kontorova model related to
dislocations in one-dimensional crystals [28,29] and the analysis of a long slender bar of a polymeric material under
tension in [32,33]. Similar optimization problems are also considered in mathematical economics [19–21,23,15,25–27].
In [34] these problems were considered in the case when ft = f0 and Ωt = X × X for all integers t ≥ 0, in [35,36] they were
studied in the case when Ωt = X × X for all integers t ≥ 0 and in [25–27] we studied these problems in the case when
ft = f0 and Ωt = Ω0 for all integers t ≥ 0. Here we study a general case when the optimal control system is determined by
a nonstationary sequence of objective functions {ft}∞t=0 and by a nonstationary sequence of sets of admissible pairs {Ωt}

∞

t=0.
This makes the situation more realistic but more difficult and less understood.

For each y, z ∈ X and each pair of integers T1, T2 satisfying 0 ≤ T1 < T2 set

U({ft}∞t=0, T1, T2) = inf


T2−1
t=T1

ft(xt , xt+1) : {xt}
T2
t=T1

is a program


, (1.4)

U({ft}∞t=0, T1, T2, y) = inf


T2−1
t=T1

ft(xt , xt+1) : {xt}
T2
t=T1

is a program and xT1 = y


, (1.5)

U({ft}∞t=0, T1, T2, y, z) = inf


T2−1
t=T1

ft(xt , xt+1) : {xt}
T2
t=T1

is a program and xT1 = y, xT2 = z


. (1.6)

Here we assume that the infimum over empty set is ∞.
Denote by Mreg the set of all sequences of functions {fi}∞i=0 ∈ M for which there exist a program {xft }∞t=0 and constants

cf > 0, γf > 0 such that the following conditions hold:

(C1) the function ft is lower semicontinuous for all integers t ≥ 0;
(C2) for each pair of integers T1 ≥ 0, T2 > T1,

T2−1
t=T1

ft(x
f
t , x

f
t+1) ≤ U({ft}∞t=0, T1, T2) + cf ;

(C3) for each ϵ > 0 there exists δ > 0 such that for each integer t ≥ 0 and each (x, y) ∈ Ωt satisfying ρ(x, xft ) ≤ δ,

ρ(y, xft+1) ≤ δ we have

|ft(x
f
t , x

f
t+1) − ft(x, y)| ≤ ϵ;



Download	English	Version:

https://daneshyari.com/en/article/839900

Download	Persian	Version:

https://daneshyari.com/article/839900

Daneshyari.com

https://daneshyari.com/en/article/839900
https://daneshyari.com/article/839900
https://daneshyari.com/

