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a b s t r a c t

We deal with a nonlocal interaction equation describing the evolution of a particle density
under the effect of a general symmetric pairwise interaction potential, not necessarily in
convolution form. We describe the case of a convex (or λ-convex) potential, possibly not
smooth at several points, generalizing the results of Carrillo et al. (2011). We also identify
the cases in which the dynamic is still governed by the continuity equation with well-
characterized nonlocal velocity field.
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1. Introduction

Let us consider a distribution of particles, represented by a Borel probability measure µ on Rd. We introduce the
interaction potential W : Rd

× Rd
→ R. The value W(x, y) describes the interaction of two particles of unit mass at the

positions x and y. The total energy of a distribution µ under the effect of the potential is given by the interaction energy
functional, defined by

W(µ) :=
1
2


Rd×Rd

W(x, y) d(µ × µ)(x, y). (1.1)

We assume that W satisfies the following assumptions:

(i) W is symmetric, i.e.

W(x, y) = W(y, x) for every x, y ∈ Rd
; (1.2)

(ii) W is a λ-convex function for some λ ∈ R, i.e.

there exists λ ∈ R such that (x, y) → W(x, y) −
λ

2
(|x|2 + |y|2) is convex; (1.3)
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(iii) W satisfies the quadratic growth condition at infinity, i.e.

there exists C > 0 such thatW(x, y) ≤ C(1 + |x|2 + |y|2) for every x, y ∈ Rd. (1.4)

We are interested in the evolution problem given by the continuity equation

∂tµt + div (vtµt) = 0, in (0, ∞) × Rd, (1.5)

describing the dynamics of the particle densityµt , under themutual attractive–repulsive interaction described by functional
(1.1). For any t , µt is a Borel probability measure and the velocity vector field vt enjoys a nonlocal dependence on µt . For
instance, in the basic model represented by a C1 potential W which depends only on the difference of its variables, so that
we may writeW(x, y) = W (x − y), the velocity is given by convolution:

vt = −∇W ∗ µt . (1.6)

Under the assumptions (1.2)–(1.4) and W(x, y) = W (x − y), in general W is not differentiable but only subdifferentiable,
therefore it is reasonable to consider a velocity field of the form

vt = −ηt ∗ µt , (1.7)

where, for any t ,ηt represents a Borelmeasurable selection in the subdifferential ofW , andwewillwriteηt ∈ ∂W . Unlike the
case (1.6), in general such selection may depend on t . We stress that, for fixed t , the map x → ηt(x) needs to be pointwise
defined, since the solutions we consider are probability measures, and since this model typically presents concentration
phenomena when starting with absolutely continuous initial data.

In this paper, we are going to analyze equations of the form (1.5)–(1.7) as the gradient flow of the interaction energy
(1.1) in the space of Borel probability measures with finite second moment, endowed with the metric-differential structure
induced by the so-calledWasserstein distance. This interpretation coming from the optimal transport theorywas introduced
in [1,2] for nonlinear diffusion equations and generalized for a large class of functionals including potential, interaction, and
internal energy by different authors [3–5], see [6] for related information.

The gradient flow interpretation allows to construct solutions by means of variational schemes based on the euclidean
optimal transport distance as originally introduced in [7] for the linear Fokker–Planck equation. The convergence of these
variational schemes for general functionals was detailed in [4]. The results in this monograph apply to the interaction
equation (1.5)–(1.6), with a C1 smooth nonnegative potential verifying the convexity assumption (1.3) and a growth
condition at infinity weaker than (1.4).

On the other hand, these equations have appeared in the literature as simple models of inelastic interactions [8–12] in
which the asymptotic behavior of the equations is given by a total concentration towards a uniqueDiracDelta pointmeasure.
The typical potential in these models was a power law,W(x, y) = |x− y|α, α ≥ 0. Moreover, it was noticed in [11] that the
convergence towards this unique steady state was in finite time for certain range of exponents in the one dimensional case.

Also these equations appear in very simplified swarming or population dynamics models for collective motion of
individuals, see [13–17] and the references therein. The interaction potentialmodels the long-range attraction and the short-
range repulsion typical in animal groups. In case the potential is fully attractive, Eq. (1.5) is usually referred as the aggregation
equation. For the aggregation equation, finite time blow-up results for weak-Lp solutions, unique up to the blow-up time,
have been obtained in the literature [15,18,19]. In fact, those results conjectured that solutions tend to concentrate and
form Dirac Deltas in finite time under suitable conditions on the interaction potential. On the other hand, the confinement
of particles is shown to happen for short-range repulsive long-range attractive potentials under certain conditions [20].
Some singular stationary states such as uniform densities on spheres have been identified as stable/unstable for radial
perturbations in [17]with sharp conditions on the potential. Finally, in the one dimensional case, stationary states formed by
finite number of particles and smooth stationary profiles are found whose stability has been studied in [21,22] in a suitable
sense.

A global-in-time well-posedness theory of measure weak solutions has been developed in [23] for interaction potentials
of the formW(x, y) = W (x−y) satisfying the assumptions (1.2)–(1.4), and additionally being C1-smooth except possibly at
the origin. The convexity condition (1.3) restricts the possible singularities of the potential at the origin since it implies that
W is Lipschitz, and therefore the possible singularity cannot be worse than |x| locally at the origin. Nevertheless, for a class
of potentials in which the local behavior at the origin is like |x|α, 1 ≤ α < 2, the solutions converge towards a Dirac Delta
with the full mass at the center of mass of the solution. The condition for blow-up is more general and related to the Osgood
criterion for uniqueness of ODEs [15,23,18]. Note that the center of mass of the solution is preserved, at least formally, due
to the symmetry assumption (1.2).

In this work, we push the ideas started in [23] further in the direction of giving conditions on the interaction potential to
have a global-in-time well-posedness theory of measure solutions. The solutions constructed in Section 2 will be gradient
flow solutions, as in [4], built via the variational schemes based on the optimal transport Wasserstein distance. The crucial
point for the analysis in this framework is the identification of the velocity field in the continuity equation satisfied by
the limiting curve of measures from the approximating variational scheme. In order to identify it, we need to characterize
the sub-differential of the functional defined in (1.1) with respect to the differential structure induced by the Wasserstein
metric. TheWasserstein sub-differential of the functional W , which is rigorously introduced in Section 2, is defined through
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