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a b s t r a c t

We prove the existence of solutions for the Monge minimization problem, addressed in
a metric measure space (X, d,m) enjoying the Riemannian curvature-dimension condi-
tion RCD∗(K ,N), with N < ∞. For the first marginal measure, we assume that µ0 ≪ m.
As a corollary, we obtain that the Monge problem and its relaxed version, the Monge–
Kantorovich problem, attain the same minimal value.

Moreover we prove a structure theorem for d-cyclically monotone sets: neglecting a
set of zero m-measure they do not contain any branching structures, that is, they can be
written as the disjoint union of the image of a disjoint family of geodesics.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let (X, d,m) be a metric measure space verifying the Riemannian curvature dimension condition RCD∗(K ,N) for K ,N ∈

R with N ≥ 1. In this note we prove the existence of a solution for the following Monge problem: given µ0, µ1 ∈ P (X), the
space of Borel probability measures over X , solve the following minimization problem

inf
T♯µ0=µ1


X
d(x, T (x))µ0(dx), (1.1)

provided µ0 ≪ m. In more detail, the minimization of the functional runs over the set of µ0-measurable maps T : X → X
such that T♯µ0 = µ1, that is

µ0(T−1(A)) = µ1(A), ∀A ∈ B(X),

where B(X) denotes the σ -algebra of all Borel subsets of X .
On the way to the proof of the existence of an optimal map, we will also prove a structure theorem for branching

structures inside d-cyclicallymonotone sets. Before giving the statements of the twomain results of this note and an account
on the strategies to prove them, we recall some of the (extensive) literature on the Monge minimization problem.

The first formulation for (1.1) (Monge in 1781) was addressed in Rn with the cost given by the Euclidean norm and
the measures µ0, µ1 ≪ Ln were supposed to be supported on two disjoint compact sets. The original problem remained
unsolved for a long time. In 1978 Sudakov in [1] proposed a solution for any distance cost induced by a norm, but an argument
about disintegration of measures contained in his proof was not correct, see [2] for details. Then the Euclidean case was
correctly solved by Evans and Gangbo in [3], under the assumptions that sptµ0 ∩ sptµ1 = ∅, µ0, µ1 ≪ Ln and their
densities are Lipschitz functions with compact support. After that, many results reduced the assumptions on the supports
of µ0, µ1, see [4,5]. The result on manifolds with geodesic cost is obtained in [6]. The case of a general norm as cost function
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on Rn has been solved first in the particular case of crystalline norms in [7], and then in full generality independently by
L. Caravenna in [8] and by T. Champion and L. De Pascale in [9].

The study of the geodesic metric space framework started with [10], where the metric space was assumed to be also
non-branching. There the existence of solutions to (1.1) was obtained for metric spaces verifying the measure-contraction
property MCP(K ,N) (for instance the Heisenberg group). An application of the results of [10] to the Wiener space can be
found in [11]. Then in [12] the problem was studied removing the non-branching assumption but obtaining existence of
solutions only in a particular case.

Non-branching metric measure spaces enjoying CD∗(K ,N) also verify MCP(K ,N), see [13]. Then from [10] the Monge
problem is solved also in that case. So with respect to the most general known case, we impose a stronger curvature
information (namely RCD∗(K ,N)) and we remove the non-branching assumption.

1.1. The results

The nowadays classical strategy to show existence of optimal maps is to relax the integral functional to the larger class
of transport plans

Π(µ0, µ1) := {π ∈ P (X × X) : (P1)♯π = µ0, (P2)♯π = µ1},

over where the functional we want to minimize has now the following expression
d(x, y)η(dxdy).

For i = 1, 2, Pi : X × X → X denotes the projection map on the ith component. Assuming that the functional is finite at
least on one element of Π(µ0, µ1), we have the existence of ηopt ∈ Π(µ0, µ1) so that

d(x, y)ηopt(dxdy) = inf
η∈Π(µ0,µ1)


X
d(x, y)η(dx),

by linearity in η and tightness of Π(µ0, µ1). Then the central question, whose positive answer would prove existence of a
solution to Monge problem, is whether ηopt is supported on the graph of am-measurable map T : X → X .

A property of ηopt inside Π(µ0, µ1) is the fact that is concentrated on a d-cyclically monotone set. We shall build an
optimal map starting from this monotonicity. But while the Riemannian curvature-dimension condition RCD∗(K ,N) gives
crucial information on d2-cyclicallymonotone sets (neglecting a set ofmeasure zero, they are the graph of ameasurablemap,
see Section 2 and references therein), nothing is known under this curvature assumption on the structure of d-cyclically
monotone sets. In particular what wewould like to exclude is the presence of branching structures. Note that the first result
proving absence of branching geodesics assuming a curvature condition, in that case strong CD(K , ∞), is contained in [14].
The same type of result, but only for L2-Wasserstein geodesics with end point a Dirac delta, was already present in an earlier
work of Rajala, see [15].

The strategy we will follow is: prove that d-cyclically monotone sets do not have branching structures m-almost
everywhere; then use the approach with Disintegration Theorem (see for instance [10] and references therein) to reduce
the Monge problem to a family of 1-dimensional Monge problem. There one can apply the 1-dimensional theory. Thanks
to the curvature assumption we can prove a suitable property for the first marginal measures and obtain the existence of
the 1-dimensional optimal maps, one for each 1-dimensional Monge problem. Then gluing together all the one-dimensional
optimal maps, one gets an optimal map T : X → X solving the Monge problem (1.1). A more precise program on the use of
Disintegration Theorem in the Monge problem will be given in Section 3.

We conclude this introductory part stating the two main results we will prove. The first is about the structure of the
d-cyclically monotone set associated to a Kantorovich potential ϕd for the problem (1.1).

Theorem 1.1. Let (X, d,m) be a metric measure space verifying RCD∗(K ,N) for some K ,N ∈ R, with N ≥ 1. Let moreover Γ

be a d-cyclically monotone set as (3.1) and let Te be the set of all points moved by Γ as in Definition 3.2. Then there exists T ⊂ Te
that we call the transport set such that

m(Te \ T ) = 0,

and for all x ∈ T , the transport ray R(x) is formed by a single geodesic and for x ≠ y, both in T , either R(x) = R(y) or R(x)∩R(y)
is contained in the set of initial points a ∪ b as defined in Definition 3.2.

All the terminology used in Theorem 1.1will be introduced in Section 3. Taking advantage of Theorem 1.1 we then obtain
the following.

Theorem 1.2. Let (X, d,m) be a metric measure space verifying RCD∗(K ,N) for N < ∞. Let µ0, µ1 ∈ P (X) with W1(µ0, µ1)
< ∞ and µ0 ≪ m. Then there exists a Borel map T : X → X such that T♯µ0 = µ1 and

X
d(x, T (x))µ0(dx) =


X×X

d(x, y)ηopt(dxdy).

In the previous theorem,W1 denotes the L1-Wasserstein distance on the space of probability measures on (X, d).
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