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In this paper we build a Sobolev type embedding from a weighted Sobolev space into a
weighted L' space on the entire space RY. As applications, we study the existence and the
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1. Introduction

In this paper we study the quasilinear elliptic equation

(P)

—div(|VulP~*Vu) + V(xD[ul"*u = Q(jx]), xeR",
u(x) - 0, x| > o0

where N > 3,1 < p,q < N and p # q which means that the left hand side of (P) is inhomogeneous in u. The functions
V,Q € C((0, 00), (0, 00)) satisfy the following properties near zero and infinity:

(V) there exist a, ay € R such that

. V() V()
liminf — > 0, liminf —= > 0,
r—oo rd r—0 1%
(Q) there exist b, by € R such that
) Q(r) . Q(r)
lim sup —— < oo, limsup —— < oo,
r—00 rb r—0 rbo

From (V) and (Q) one sees that the potentials V and Q may be singular in the sense that they are unbounded, decaying or
vanishing.

The purpose of this paper is to prove the existence and the uniqueness of a solution of (P) under certain circumstance by
variational methods.
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We introduce some notations of function spaces. Let C§° (RM) be the set consisting of all the smooth functions with
compact support and C§5.(RV) = {u € C°(RY) | u is radial}. Let D} (RV) be the completion of Cgo(RN) under

p
IVullp @y = (/ |Vu|de>
RN

Define

LI®RV; V) = {u : RN — R | uis Lebesgue measurable, / V(x])|u|%dx < oo} ,
RN

and

L'®RY; Q) = {u : RN — R | uis Lebesgue measurable, / Q(x)|uldx < oo} ,

RN
with norms
i
lulla@n.vy = / V(IxD[ul%dx |
RN

and

gy = [, QUDIuldx.

Then we define
X, (RY; V) == D"P(RY) N LIRN; V),

which is a reflexive Banach space equipped with the norm (see [1-3])
lullx, @vovy = IVullpgyy + lullogy.y)-

If there is a continuous embedding from X, (R"; V) into L' (RY; Q), then the functional
1 1
@ (u) = f/‘ |[VulPdx + f/ V(|x|)|u|qu—/ Q (|x|)udx
D JrN q JrN RN

is well defined and is of C! on X, (R"; V). A critical point u € X, (RY; V) of & is exactly a weak radial solution of (P) in the
sense that u € X, (RV; V) satisfies

[ 19ur2vuve  vaxpiut2up dx = [ aeeds
RN RN
forall ¢ € X, (RN; V).
In Section 2 we build a compact embedding from X, (R"; V) into L' (RV; Q) in the basis of the assumptions on V and Q.

Comments, remarks and comparisons are included in this section. In Section 3 we prove the existence of a unique weak
solution of (P).

2. The embedding X, (R"; V) — L1(RM; Q)
In this section we build an embedding theorem from X, (R"; V) into L' (R"; Q) which is continuous and compact. Denote
by B, the ball in RN centered at 0 with radius p > 0.For A C R", A° denotes the complement of A in RV.
We cite several radial lemmas established in [4,5].
Lemma 2.1 ([4]).Let 1 < p < N. Then there exists C = C(N, p) > 0, such that for allu € D}P(RV),
~ _N-p
[uC)| < Clx|” 7 [[Vullpgny-

Lemma 2.2 ([5]).

(i) Let 1 < q < p < N. Assume (V) witha > Z((‘;j’;’)) — N. Then for

N — —1
O<o¢<a*:=Tp+qT(a+N),

there exist R > 1 and C= E(N, D, q, a, ) > 0such that forallu € X, (RN; V),

~ _a
[u@)| < Clx[ 9 |lully, @,y %1 =R
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