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a b s t r a c t

In this paper, we prove imbedding inequalities with Lϕ-norms in the Orlicz–Sobolev
space of the forms and establish Lϕ norm inequalities for the related operators applied
to differential forms. We also obtain the global imbedding theorems in Lϕ(m)-averaging
domains.
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1. Introduction

The purpose of this paper is to develop the local and global Lϕ imbedding inequalities for the Orlicz–Sobolev space of
differential forms satisfying the A-harmonic equation. The imbedding inequalities have been playing a crucial role in the
Lp theory of the Sobolev space and partial differential equations. The study and applications of imbedding inequalities are
now ubiquitous in different areas, including PDEs and analysis. The investigation of the A-harmonic equation for differential
forms has developed rapidly in recent years. The A-harmonic equation is an important extension of the p-harmonic equation
div(∇u|∇u|p−2) = 0 in Rn, p > 1. In themeantime, the p-harmonic equation is a natural generalization of the usual Laplace
equation ∆u = 0. Many interesting results concerning the properties of solutions to the A-harmonic equation have been
established recently, see [1–5]. As extensions of the functions, differential forms have beenwidely studied and used inmany
fields of sciences and engineering, including theoretical physics, general relativity, potential theory and electromagnetism.
For instance, differential forms can be used to describe various systems of partial differential equations and to express
different geometrical structures onmanifolds. Some of them are often utilized in studying deformations of elastic bodies, the
related extrema for variational integrals and certain geometric invariance. The norm estimates for functions or differential
forms are critical to investigate the properties of the solutions of the partial differential equations, or a system of the partial
differential equations. The study of Lp norm inequalities, including Lp imbedding inequalities, for differential forms satisfying
some versions of harmonic equations has beenwell developed during the recent years, see [1–9]. However, the investigation
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for Lϕ imbeddings in the Orlicz–Sobolev space of differential forms just started. In this paper, we prove the local and global
Lϕ imbedding theorems for the Orlicz–Sobolev space of differential forms. Our main results are presented and proved in
Theorems 2.5 and 3.2, respectively. These results enrich the Lp theory of differential forms and can be used to estimate the
integrals of the solutions of the related differential system and to study the Lϕ integrability of differential forms.

Throughout this paper, we always assume that Ω is a bounded domain in Rn, n ≥ 2, B and σB are the balls with the
same center and diam(σB) = σdiam(B). We use |E| to denote the n-dimensional Lebesgue measure of a set E ⊆ Rn. For
a function u, the average of u over B is defined by uB =

1
|B|


B udm. All integrals involved in this paper are the Lebesgue

integrals. Differential forms are widely used not only in analysis and partial differential equations [1,10], but also in physics
[11,12]. Differential forms are extensions of differentiable functions in Rn. For example, the function u(x1, x2, . . . , xn) is
called a 0-form. A differential 1-form u(x) in Rn can be written as u(x) =

n
i=1 ui(x1, x2, . . . , xn)dxi, where the coefficient

functions ui(x1, x2, . . . , xn), i = 1, 2, . . . , n, are differentiable. Similarly, a differential k-form u(x) can be expressed as

u(x) =


I

uI(x)dxI =


ui1i2···ik(x)dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

where I = (i1, i2, . . . , ik), 1 ≤ i1 < i2 < · · · < ik ≤ n. Let ∧
l
= ∧

l(Rn) be the set of all l-forms in Rn, D′(Ω, ∧l) be the space
of all differential l-forms in Ω , and Lp(Ω, ∧l) be the l-forms u(x) =


I uI(x)dxI in Ω satisfying


Ω

|uI |
p < ∞ for all ordered

l-tuples I , l = 1, 2, . . . , n. We denote the exterior derivative by d and the Hodge star operator by ⋆. The Hodge codifferential
operator d⋆ is given by d⋆

= (−1)nl+1 ⋆ d⋆, l = 1, 2, . . . , n. For u ∈ D′(Ω, ∧l) the vector-valued differential form

∇u =


∂u
∂x1

, . . . ,
∂u
∂xn


consists of differential forms ∂u

∂xi
∈ D′(Ω, ∧l),where the partial differentiation is applied to the coefficients ofω.We consider

here the nonlinear partial differential equation

d⋆A(x, du) = B(x, du) (1.1)

which is called non-homogeneous A-harmonic equation, where A : Ω × ∧
l(Rn) → ∧

l(Rn) and B : Ω × ∧
l(Rn) →

∧
l−1(Rn) satisfy the conditions:

|A(x, ξ)| ≤ a|ξ |
p−1, A(x, ξ) · ξ ≥ |ξ |

p and |B(x, ξ)| ≤ b|ξ |
p−1 (1.2)

for almost every x ∈ Ω and all ξ ∈ ∧
l(Rn). Here a, b > 0 are constants and 1 < p < ∞ is a fixed exponent associated with

(1.1). A solution to (1.1) is an element of the Sobolev spaceW 1,p
loc (Ω, ∧l−1) such that

Ω

A(x, du) · dϕ + B(x, du) · ϕ = 0 (1.3)

for all ϕ ∈ W 1,p
loc (Ω, ∧l−1) with compact support. If u is a function (0-form) in Rn, the Eq. (1.1) reduces to

divA(x, ∇u) = B(x, ∇u). (1.4)

If the operator B = 0, Eq. (1.1) becomes

d⋆A(x, du) = 0 (1.5)

which is called the (homogeneous) A-harmonic equation. Let A : Ω × ∧
l(Rn) → ∧

l(Rn) be defined by A(x, ξ) = ξ |ξ |
p−2

with p > 1. Then, A satisfies the required conditions and (1.5) becomes the p-harmonic equation d⋆(du|du|p−2) = 0 for
differential forms. See [1–9] for recent results on the A-harmonic equations and related topics.

Let D ⊂ Rn be a bounded, convex domain. The following operator Ky with the case y = 0 was first introduced by H.
Cartan in [10]. Then, it was extended to the following general version in [13]. For each y ∈ D, there corresponds a linear
operator Ky : C∞(D, Λl) → C∞(D, Λl−1) defined by (Kyω)(x; ξ1, . . . , ξl−1) =

 1
0 t l−1ω(tx + y − ty; x − y, ξ1, . . . , ξl−1)dt

and the decompositionω = d(Kyω)+Ky(dω). A homotopy operator T : C∞(D, Λl) → C∞(D, Λl−1) is defined by averaging
Ky over all points y in D

Tω =


D
ϕ(y)Kyωdy , (1.6)

where ϕ ∈ C∞

0 (D) is normalized by

D ϕ(y)dy = 1. For simplicity purpose, we write ξ = (ξ1, . . . , ξl−1). Then, Tω(x; ξ) = 1

0 t l−1

D ϕ(y)ω(tx + y − ty; x − y, ξ)dydt . By substituting z = tx + y − ty and t = s/(1 + s), we have

Tω(x; ξ) =


D
ω(z, ζ (z, x − z), ξ)dz, (1.7)
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