
Nonlinear Analysis 97 (2014) 119–124

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

In any dimension a ‘‘clamped plate’’ with a uniform weight
may change sign✩

Hans-Christoph Grunau a, Guido Sweers b,∗

a Facultät für Mathematik, Otto-von-Guericke-Universität, Postfach 4120, 39016 Magdeburg, Germany
b Mathematisches Institut, Universität zu Köln, Weyertal 86-90, 50931 Köln, Germany

a r t i c l e i n f o

Article history:
Received 4 October 2013
Accepted 15 November 2013
Communicated by Enzo Mitidieri

MSC:
35J40
35B09
35J08

Keywords:
Biharmonic
Dirichlet boundary conditions
No sign preservation

a b s t r a c t

Positivity preserving properties have been conjectured for the bilaplace Dirichlet problem
in many versions. In this note we show that in any dimension there exist bounded smooth
domainsΩ such that even the solution of ∆2u = 1 inΩ with the homogeneous Dirichlet
boundary conditions u = uν = 0 on ∂Ω is sign-changing. In two dimensions this corre-
sponds to the Kirchhoff–Love model of a clamped plate with a uniform weight.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that for bounded smooth domainsΩ ⊂ Rn with outside unit normal ν, the biharmonic boundary value
problem∆

2u = f inΩ,

u =
∂

∂ν
u = 0 on ∂Ω,

(1)

is in general not sign preserving unless the domain is a ball or close to a ball, see [1–3]. In these papers it was shown that the
corresponding Green function is positive, which is equivalent with (1) being sign preserving. A first counterexample, which
shows that (1) is not positivity preserving on arbitrary domains, is due to Duffin in [4], cf. also [5]. The most striking one,
showing sign change of u with a suitable f ≥ 0 with Ω ⊂ R2 being a mildly eccentric ellipse, was found by Garabedian,
see [6]. For a short history of this problem we refer to [7]. The weaker question, whether or not the first eigenfunction is of
one sign, has been studied e.g. in [8–10]. For an overview see also [11]. Although a wider class of domains are allowed for
this eigenfunction to be of one sign, on general domains the fixed sign cannot be expected. Some questions on how the sign
change of both problems are related are found in [12].

✩ The authors are grateful to Svitlana Mayboroda for raising the corresponding question.
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In the present note we consider the apparently still weaker question, whether or not the solution of∆
2u = 1 inΩ,

u =
∂

∂ν
u = 0 on ∂Ω,

(2)

which is (1) with f = 1, is positive. This question was raised by Svitlana Mayboroda and for a motivation from an applied
point of view see [13]. In the previous note [14] we constructed a counterexample in R2, which is based on Garabedian’s
celebrated example [6]. In that note we use the inversion as a particular Möbius transformation and corresponding covari-
ance properties of the biharmonic operator. This note will show by means of an inductive procedure that sign change may
occur in any dimension. This generalises and simplifies an approach by Nakai and Sario in [15].

The precise statement of our main result is as follows.

Theorem 1. For any integer n ≥ 2, there are bounded smooth domainsΩ ⊂ Rn such that the solution u of (2) changes sign.

2. An inductive procedure

In [14, Theorem 2.4] one finds the following result:

• There are bounded C∞-smooth domainsΩ ⊂ R2 such that the solution of (2) changes sign.

The proof is based on the fact that a solution u of (2) composed with an inversion h(x) = |x|−2 xwith 0 ∉ Ω satisfies

∆2 (u ◦ h(x)) = |x|−6 . (3)

One takes a domain Ω for which the Green function changes sign near opposite boundary points and moves Ω such that
the centre of inversion 0 is located outside ofΩ but near one such a boundary point. The final step consists of showing that
the singularity in (3) is sufficiently close to a δ-distribution near the first boundary point in order to keep the negative sign
near the opposite boundary point. See [14] for details.

With [14, Theorem 2.4] it suffices to show the following.

Theorem 2. Let n ≥ 2. Assume that there is a bounded smooth domain A ⊂ Rn for which the solution of (2) with Ω = A is
sign-changing. Then there exists a bounded smooth domain A∗

⊂ Rn+1 forwhich the solution of (2)withΩ = A∗ is sign-changing.

In order to prove this result we pick a dimension n ≥ 2 and a bounded smooth domain A ⊂ Rn and assume that the
corresponding smooth solution u : Ā → R of (2) is sign changing. Writing x = (x′, xn+1) ∈ Rn+1 and putting

A∗

∞
:= A × R, u∞(x′, xn+1) := u(x′), (4)

we immediately get a sign changing solution of (2) in the unbounded cylindrical domain A∗
∞

⊂ Rn+1. The idea is to suitably
cap off A∗

∞
to a bounded smooth domain A∗

h . See Fig. 1. We solve (2) for these bounded domains and will show that the
corresponding solution is still sign changing when h is large enough.

We start with a technical result.

Lemma 3. Let A ⊂ Rn be a smooth and bounded domain. Then there exists a function gA ∈ C0(Ā, [0, 1]) ∩ C∞(A, [0, 1]) such
that for any h > 0 the domains A∗

h ⊂ Rn+1, defined by

A∗

h :=


x′, xn+1


: x ∈ A, − h − gA(x′) < xn+1 < h + gA(x′)


(5)

are smooth.

Proof. The signed distance d (∂A, ·) : Rn
→ R to the boundary of A is defined by

d

∂A, x′


=


inf
x′

− x̃
 ; x̃ ∈ ∂A


for x′

∈ Ā,
− inf

x′
− x̃

 ; x̃ ∈ ∂A


for x′
∉ Ā.

Since ∂A is smooth and bounded, there exists rA ∈ (0, 1), such that A satisfies a uniform interior sphere condition as well as
a uniform exterior sphere condition bothwith spheres of radius rA. Moreover, the function d(∂A, ·) is smooth on ∂A+BrA(0).
See [16]. Let f ∈ C∞(R) be nondecreasing such that

f (s) =


−

1
2

for s < −
2
3
,

s for s ∈


−

1
3
,
1
3


,

1
2

for s >
2
3
,
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