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a b s t r a c t

We deal with additive monotonemappings defined on a lattice-ordered Abelian group and
having values in a Dedekind complete Riesz space and which are invariant with respect
to some representation of an amenable semigroup. Using a Hahn–Banach-type theorem
of Zbigniew Gajda, we obtain generalizations of factorization theorems obtained in 1984
by Wolfgang Arendt for positive linear operators. The theorems of Arendt are generalized
in two directions. First, we extend these results from the case of linear operators acting
between Riesz spaces to the case of additive mappings between lattice-ordered Abelian
groups. Second, we study mappings which are invariant with respect to a semigroup rep-
resentation.

As an application of the results obtained, we show some property of composition oper-
ators between spaces of additive functions acting between lattice-ordered groups.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The motivation for the present studies comes from abstract versions of the Radon–Nikodym theorem, which were ob-
tained first by Maharam [1,2]. She dealt with function-valued measures and abstract integrals. Later, her results were gen-
eralized in the framework of Riesz spaces by Luxemburg and Schep [3, Theorems 3.1, 3.4 and 4.2] and by Huijsmans and
Luxemburg [4, Theorem 0.7], and others.

Let F and G be two Riesz spaces, and let U:G → F be a positive linear operator. Then U is said to have the Maharam
property if for all g ∈ G and for all f ∈ F such that g ≥ 0 and 0 ≤ f ≤ Ug there exists some g1 ∈ G such that 0 ≤ g1 ≤ g and
Ug1 = f (see [3, Section 2]).

The Luxemburg–Schep theorem [3, Theorem 3.1] says that, if the Riesz spaces F and G are Dedekind complete and the
operator U:G → F is order continuous, then the Maharam property of U is equivalent to the following fact, which is an
operator version of the assertion of the Radon–Nikodym theorem.

For every operator T :G → F such that 0 ≤ T ≤ U there exists an orthomorphismπ of G such that 0 ≤ π ≤ I and T = U ◦π .
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Recall that an orthomorphism on a Riesz space is an order-bounded linear mapping such that f ⊥ g implies that π f ⊥ g
(the symbol ⊥ denotes the disjointness of elements; i.e., f ⊥ g if |f | ∧ |g| = 0). A typical example of an orthomorphism is
the operator of multiplication:

(π f )(x) → g(x)f (x),

defined on some space, for example on Lp(X, µ), with g being µ-measurable and µ-almost everywhere finite. Therefore,
the orthomorphism π in the Luxemburg–Schep theorem plays the role of the Radon–Nikodym derivative in the classical
Radon–Nikodym theorem.

A dual version of the operator Radon–Nikodym theorem is also proved in [3]. For given positive linear mappings T and
V defined on an Archimedean Riesz space F and having values in a Dedekind complete Riesz space G, the existence of an
orthomorphism π of G such that T = π ◦ V is characterized in [3, Theorem 4.2].

In 1984, Arendt [5] proved the following two theorems.

Theorem 1 (Arendt [5, Theorem 1.1]). Let E be a Dedekind complete Riesz space, let F and G be Riesz spaces, and let V : F → G be
a Riesz homomorphism. Then, given a positive linear mapping S:G → E, every positive linear mapping T : F → E which satisfies
T ≤ S ◦ V admits a factorization

T = S1 ◦ V ,

where S1:G → E is a linear mapping such that 0 ≤ S1 ≤ S.

Theorem 2 (Arendt [5, Theorem 1.4]). Let E, F , and G be Banach lattices with G having order-continuous norm, and let U:G → F
be an interval-preserving positive linear mapping. Then, given a positive linear mapping S: E → G, every positive linear mapping
T : E → F which satisfies T ≤ U ◦ S admits a factorization

T = U ◦ S1,

where S1: E → G is a linear mapping such that 0 ≤ S1 ≤ S.

A particular case of the second Arendt theorem, for G = E and with S being equal to the identity mapping, coincides
with the Luxemburg–Schep theorem. Notice that the Maharam property is replaced by the interval-preserving property.
The first Arendt theorem generalizes the dual Luxemburg–Schep theorem in a similar way. It is also worth mentioning that
the proofs of the Arendt theorems are relatively short in comparison with the original proofs of Maharan’s results and the
Luxemburg–Schep theorem.

In the paperwewill join the original approach of Arendt fromhis factorization theorems (Theorems 1 and 2)with the con-
cept of lattice-ordered groups introduced by Birkhoff [6] andwith the idea of Gajda of using amenable semigroup techniques
to study functional equations with solutions which are invariant with respect to a semigroup representation (see [7,8]).

We obtain extensions of the Arendt theorems in a more general framework, and also we investigate operators which
are invariant under an amenable semigroup representation. We will deal with mappings defined on lattice-ordered groups
(ℓ-groups for short) which are invariant with respect to some representation of an amenable semigroup. Therefore, we
will consider monotone (order-preserving) additive mappings instead of linear operators, and homomorphisms of ℓ-groups
instead of Riesz homomorphisms.

Let (X, ·) denote a right-amenable semigroup, and let G = (G, +, ≤) be a partially ordered Abelian group. Further, let
Φ: X → End(G) be a representation of X in the semigroup End(G) of endomorphisms of G. We will preserve the usual
convention and we will write Φs instead of Φ(s) for s ∈ X . Therefore, the following equality holds true:

Φst = Φs ◦ Φt , s, t ∈ X .

If X is a group, then also

Φs−1 = (Φs)
−1, s ∈ X;

in particular, every Φs is an invertible map.
Let F be another partially ordered group. A map f :G → F is calledmonotone if

x ≤ y H⇒ f (x) ≤ f (y)

for all x, y ∈ G, and f is called subadditive if

f (x + y) ≤ f (x) + f (y)

for all x, y ∈ G. Further, f is called Φ-subinvariant if f ◦ Φs ≤ f for all s ∈ X , and f is Φ-invariant if f ◦ Φs = f for all s ∈ X .
IfG and F are ℓ-groups, then by homomorphismof ℓ-groupswemean every additive homomorphismof lattices f :G → F .

It is straightforward to see that every such mapping is in particular monotone. To avoid confusion we will be using the term
additive mapping instead of homomorphism whenever we mean a group homomorphism between ℓ-groups which is not
an ℓ-group homomorphism.

Let G and F be Abelian ℓ-groups. The following easy property of odd monotone mappings will be used later.

Proposition 1. Assume that f :G → F is an odd monotone mapping. Then |f (x)| ≤ f (|x|) for all x ∈ G.
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