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a b s t r a c t

We study the steady states of a predator–preymodel with prey-taxis incorporating Holling
type II functional response under the homogeneous Neumann boundary condition. The
stability of equilibrium points and the existence of non-constant steady states are inves-
tigated. We obtain that the prey-tactic sensitivity coefficient delays the stability of the
unique positive constant solution, but for other equilibriumpoints’ stability, the prey-tactic
sensitivity coefficient does not influence on it. Furthermore, we derive some sufficient con-
ditions relative to the prey-tactic sensitivity coefficient which confines the existence of
steady states and find that even if the interaction coefficient is sufficiently large, there also
exist non-constant positive steady states under some conditions.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The coexistence of prey population and predator population can be mostly described by the presence of positive steady
states and spatial patterns of the populations can be characterized by non-constant steady states, which have been studied
for population models with random diffusions by papers [1–9].

In addition to the random diffusion of predators and the prey, the spatial–temporal variations of the predator’s velocity
are often directed by prey taxis, which is defined as the movement of predators controlled by the prey density. Paper [10]
showed that predators in area-restricted search tend to move towards areas with high food abundance to increase the
efficiency of foraging. Other studies measuring characteristics of individual movement support the mechanism of prey-
taxis [11,12]. The prey-taxis equation was derived by paper [10] and was extended by [13]. Paper [14] studied the following
predator–prey model with prey-taxis:
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(u(0, x), v(0, x)) = (u0(x), v0(x)) ≥ (0, 0) inΩ,

(1.1)

where Ω is a bounded domain in RN (N ≥ 1 is an integer) with a smooth boundary ∂Ω; u and v represent the densities
of the predator and the prey respectively; positive constants d1 and d2 are the random diffusion coefficients of predator
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population and prey population respectively; positive constants a, K , r, β, c/m, b/m represent the per capita death rate of
predators, the carrying capacity of the prey, the prey intrinsic growth rate, the conversion rate, the searching efficiency, the
handling time spent by a predator to catch and consume a prey; α denotes the prey-tactic sensitivity. The term αu∇v gives
the velocity by which predators move up the gradient of the prey.

In [14], the authors studied the existence of weak solutions for model (1.1) using the Schauder fixed-point theorem, and
the uniqueness of the solution via the duality technique. In [15], the author analyzed the classical solution in C2+σ ,1+σ/2

×

C2+σ ,1+σ/2 (0 < σ < 1) to model (1.1). However, there are no studies in its steady states. The main objective of this article
is to study the existence and stability of steady-state solutions to model (1.1), which is the continuous work of papers [14,
15]. Motivated by the ‘‘volume-filling’’ mechanism [16,17], we fix

α = α(u) =:

χ

1 −

u
um


if 0 ≤ u < um,

0 if u ≥ um,

(1.2)

where χ and um are positive constants. Moreover, we assume ∂Ω ∈ C2+α .
In the following discussion, we mainly investigate the case 0 ≤ u < um, since there have been discussions for the case

u ≥ um [3,4].
This paper is organized as follows. In Section 2, we study the stability of steady states of (1.1). In Section 3, we investigate

the existence of periodic solutions from the positive constant solution of (1.1). In Section 4, we analyze the existence of the
non-constant steady state of (1.1) by using the Leray–Schauder degree theory.

2. Stability of equilibrium points

In this section we shall study the stability of nonnegative constant steady states of (1.1). Note that a steady state satisfies
the following strongly coupled elliptic system:
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(2.1)

It admits the following three non-negative constant solutions:

(i) the trivial solution (0, 0);
(ii) the semi-trivial solution (0, K);
(iii) the unique positive constant solutionw∗ =: (u∗, v∗), where

u∗ =
βmr

K(βc − ab)2
[K(βc − ab)− am], v∗ =

am
βc − ab

.

The positive constant solutionw∗ exists if and only if
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, (2.2)

and in this case v∗ < K .
It should be noted that sincem, b, K > 0, (2.2) implies that βc − ab > am

K > 0.
Let 0 = µ0 < µ1 < · · · < µk < · · · → +∞ denote the eigenvalues of −△ in Ω under the homogeneous Neumann

boundary condition and set α∗ = χ(1 −
u∗

um
).

Theorem 2.1. Let (2.2) hold. If
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thenw∗ is locally asymptotically stable.

Proof. The linearized problem of (1.1) atw∗ can be expressed by

wt = (D∆+ Fw(w∗))w,

wherew = (u(x, t), v(x, t))T ,
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