ARTICLE IN PRESS

Oceanologia (2017) xxx, xxx-xxx

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.journals.elsevier.com/oceanologia/

ORIGINAL RESEARCH ARTICLE

Budget of ⁹⁰Sr in the Gulf of Gdańsk (southern Baltic Sea)

Michał Saniewski*, Tamara Zalewska

Institute of Meteorology and Water Management, National Research Institute, Gdynia, Poland

Received 11 September 2017; accepted 17 November 2017

KEYWORDS ⁹⁰Sr; Budget; Gulf of Gdańsk **Summary** In the period from 2005 to 2011 the major source of ⁹⁰Sr to the Gulf of Gdańsk was the Vistula river. Its contribution was 99.7% of the total load. The main processes responsible for the decrease in ⁹⁰Sr activity in the Gulf of Gdańsk were: radioactive decay (87%) and sediment deposition (13%). Average increase in the activity of ⁹⁰Sr in the Gulf of Gdańsk during the study period was 5.0% (114 GBq), which was almost 2 times higher than the loss of ⁹⁰Sr due to radioactive decay. In the years 1997–2015, the effective half-life of ¹³⁷Cs was 9.1 years and that of ⁹⁰Sr was 50.3 years. Assuming a further decrease in ¹³⁷Cs and maintaining ⁹⁰Sr concentrations at present level, it is expected that ⁹⁰Sr will become the major anthropogenic isotope having impact on the level of radioactivity in the Gulf of Gdańsk.

© 2017 Institute of Oceanology of the Polish Academy of Sciences. Production and nosting by Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

* Corresponding author at: Institute of Meteorology and Water Management, National Research Institute, Maritime Branch, Waszyngtona 42, 81-342 Gdynia, Poland. Tel.: +48 58 62 88 265; fax: +48 48 62 88 163.

E-mail address: michal.saniewski@imgw.pl (M. Saniewski). Peer review under the responsibility of Institute of Oceanology of the Polish Academy of Sciences.

ELSEVIER	Production and hosting by Elsevier

https://doi.org/10.1016/j.oceano.2017.11.002

1. Introduction

The Baltic Sea is an inland sea which is practically closed since the only connection with the North Sea and the Atlantic Ocean through the Danish Straits (Skagerrak and Kattegat between southern Sweden and the Danish islands) is relatively narrow. As a consequence, the water exchange between the Baltic Sea and North Sea is limited and amounts to 0.05% per year (Wängberg et al., 2001). This makes the Baltic Sea very sensitive to contamination with different pollutants (HELCOM, 2010), including radionuclides (IAEA, 2005). The Baltic Sea is still considered as one of the water bodies that is most polluted with ⁹⁰Sr and ¹³⁷Cs in the world

OCEANOLOGIA

0078-3234/© 2017 Institute of Oceanology of the Polish Academy of Sciences. Production and hosting by Elsevier Sp. z o.o. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Please cite this article in press as: Saniewski, M., Zalewska, T., Budget of ⁹⁰Sr in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia (2017), https://doi.org/10.1016/j.oceano.2017.11.002

2

ARTICLE IN PRESS

M. Saniewski, T. Zalewska/Oceanologia xxx (2017) xxx-xxx

(HELCOM, 2009; IAEA, 2005). The major sources of radionuclides inputs into the Baltic Sea were: atmospheric testing of nuclear weapons carried out during the late 1950s and early 1960s, the Chernobyl accident in 1986, discharges from nuclear reprocessing plants located outside the Baltic Sea (Sellafield and La Hague) and discharges from nuclear facilities in the Baltic Sea drainage area (Baklanov and Sorensen, 2001; HELCOM, 2009; Nielsen et al., 1999; Nies et al., 1995). It has been estimated that the total load of ⁹⁰Sr and ¹³⁷Cs introduced into the Baltic Sea from all sources amounts to 621 TBq and 5752 TBq, respectively.

Among many pollutants introduced into the Baltic Sea, the ⁹⁰Sr isotope is considered to be particularly dangerous, due to its specific nature and relatively long half-life (28.8 years) (Kryshev, 2006). Its chemical similarity to calcium is the reason why strontium is quite easily taken up and accumulated in a body, especially in bone tissues. However, data on the activity levels of ⁹⁰Sr in various compartments of the marine environment and biota is largely limited. At the same time knowledge on the ⁹⁰Sr levels in particular elements of the marine environment and knowledge on factors controlling its temporal and spatial distribution, are crucial for determining the degree of environmental contamination, especially in incidental situations. Information on the concentration factors in organisms is of special importance as allows to determine the exposure of organisms to the radioactivity related to ⁹⁰Sr presence.

Long-term observations of the variability in concentrations of ⁹⁰Sr and ¹³⁷Cs showed that the decrease of ⁹⁰Sr levels is not as significant as in the case of ¹³⁷Cs. Moreover, the decrease is smaller than expected from the radioactive decay. Therefore, based on the analysis of data on radionuclide concentrations in various components of the marine environment (abiotic - seawater and sediment, and biotic fish and macrophytobenthic plants), obtained in the period of 2005-2011, the study, which results would become the basis for future scenarios concerning ⁹⁰Sr levels in the Baltic Sea, was undertaken. The assessment of the present level of ⁹⁰Sr pollution in the Baltic Sea was carried out in relation to current sources - riverine and atmospheric inputs of this isotope, based on the results of ⁹⁰Sr concentrations in the Vistula and atmospheric deposition, obtained for the same period as mentioned above. Finally, the main factors controlling distribution of the ⁹⁰Sr in the marine ecosystem were indicated, also in relation to long-term changes observed after potential introduction of significant ⁹⁰Sr loads into the Baltic Sea.

2. Material and methods

2.1. Study area

The Gulf of Gdańsk is located in the southeastern part of the Baltic Sea. Its northern boundary is the straight line connecting Cape Rozewie ($54^{\circ}50'N$, $18^{\circ}20'E$) with Cape Taran ($54^{\circ}58'N$, $19^{\circ}59'E$). The area of the Gulf of Gdańsk is 4940 km² (Łukawska-Matuszewska and Bolałek, 2008), while the volume of water is estimated at 291.2 km³ (Majewski, 1990). The Gulf of Gdańsk has an average depth of about 50 m, and a maximum of 118 m.

2.2. Methods of budget calculations

In order to balance the loads of 90 Sr in the Gulf of Gdańsk, it was assumed that the main sources of this isotope are: atmospheric deposition and Vistula river waters, while the factors having impact on the decrease of 90 Sr concentration in seawater are: radioactive decay, bioaccumulation and sedimentation processes (Fig. 1). The bioaccumulation took into account in the calculations was related only to marine plants and fish. The loads of 90 Sr were calculated based on literature data (mainly from own research) concerning concentrations of this isotope in particular components of the marine environment, measured in the period of 2005–2011, adopted for the estimation of the 90 Sr budget in the Gulf of Gdańsk.

Data on ⁹⁰Sr loads introduced into the Gulf of Gdańsk with atmospheric deposition and riverine runoff was obtained from the study by Saniewski and Zalewska (2016).

The concentrations of 90 Sr in seawater were measured in samples collected between 2005 and 2011 at five stations located in the Gulf of Gdańsk. The samples were obtained from the sea surface, from the bottom, and additionally along vertical profiles (every 20 m) at two stations (Fig. 1, Table 1). The analysis of 90 Sr distribution in seawater of the Gulf of Gdańsk, for the abovementioned study period, was presented in the work by Saniewski (2013).

Mean activity of 90 Sr in sediments was calculated based on literature data (Zalewska and Suplińska, 2013) and unpublished own data. The bottom areas with intensive sedimentation processes, associated with the transportation type of bottom (LOI – loss on ignition, values of 4–10%) and the accumulation bottom (with LOI values >10%) (Håkanson et al., 2003) account for respectively 1426 km² and 1840 km² of the Gulf of Gdańsk (Carman and Cederwall, 2001). Therefore, it was assumed that the ⁹⁰Sr deposition into sediments is most intensive in the area of 3266 km² (Fig. 1).

Since 90 Sr is bioaccumulated and biomagnified in the trophic chain, the concentrations of 90 Sr in macrophytobentic plants and selected fish species specific to the Gulf of Gdańsk were taken into account in the budget calculations. To estimate the load of 90 Sr removed with the caught fish, the average activity values of 90 Sr in fish species (Zalewska et al., 2016) and the mass of fish caught in 2005–2011 in the study area (Szostak et al., 2006, 2007, 2008, 2009, 2010, 2011, 2012) were used.

The estimation of ⁹⁰Sr accumulated in marine plants was carried out using data on ⁹⁰Sr concentrations in selected species of macrophytobenthic plants (Zalewska, 2015). The amount of biomass having the potential for bioaccumulation was assessed on the basis of data collected during macrophytobenthos monitoring campaigns carried out in two locations: Orłowo Cliff and Kuźnica Hollow (Brzeska and Saniewski, 2012). The sampling for monitoring purposes took place in June, i.e. in the period of intensive primary production and rapid growth of both macroalgae and vascular plants. Samples were taken by a diver, along transects, from a depth of 1 m to a maximum depth of plant occurrence. The plant material was collected from the area determined by a randomly placed frame (0.5 m \times 0.5 m). The frame was placed three times at each depth. The collected material was analyzed macroscopically and microscopically to sepa-

Please cite this article in press as: Saniewski, M., Zalewska, T., Budget of ⁹⁰Sr in the Gulf of Gdańsk (southern Baltic Sea). Oceanologia (2017), https://doi.org/10.1016/j.oceano.2017.11.002

Download English Version:

https://daneshyari.com/en/article/8399649

Download Persian Version:

https://daneshyari.com/article/8399649

Daneshyari.com