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a b s t r a c t

In this paper, using the remote start or dissipative method, we investigate ergodicity for
several kinds of functional stochastic equations including functional stochastic differential
equations (SDEs) with variable delays, neutral functional SDEs, functional SDEs driven
by jump processes, and semi-linear functional stochastic partial differential equations
(SPDEs). Using the ergodicity derived, we then treat a couple of applications in stochastic
approximation and optimization problems.
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1. Introduction

The ergodicity of stochastic differential equations (SDEs) and stochastic partial differential equations (SPDEs), in which
the state spaces are independent of the past history, has been studied extensively. There are several approaches to investigate
such properties for finite or infinite-dimensional stochastic dynamic systems; see, for example, Mattingly et al. [1] and Rey-
Bellet [2] using the Lyapunov function argument (Meyn and Tweedie [3]), Dong et al. [4] and Priola et al. [5] using Harris’
theorem [1, Theorem 1.5], and Wang [6] and Zhang [7] using the coupling method. Further references on ergodicity of
infinite-dimensional systems can also be found in the monograph [8] and the lecture notes [9].

More often than not, delays are unavoidable in a wide range of applications. In response to the great needs, there is an
extensive literature on functional differential equations. We refer to Hale and Lunel [10] for functional ordinary differential
equations, and Mohammed [11] for functional SDEs.

For functional SDEs, one of the classical methods for showing existence of an invariant measure is to exhibit an
accumulation point of a sequence of Krylov–Bogoliubov measures [8, Theorem 3.1.1, p. 21] by using the tightness criterion
of probability measures on the continuous function space [12, Theorem 8.5, p. 55]. To demonstrate the existence of an
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invariant measure, Es-Sarhir et al. [13] and Kinnally and Williams [14] considered functional SDEs with super-linear drift
term and positivity constraints, respectively. Combining some exponential-type estimates, Bo and Yuan [15] investigated
stochastic differential delay equations with jumps. It is also worthy to point out that Kolmogorov’s tightness criterion
[16, Problem 2.4.11, p. 64] plays an important role. To apply the Kolmogorov tightness criterion for the diffusion coefficients,
we generally need to show the uniform p-th moment with p > 2 for the segment processes. Although the approach in
Es-Sarhir et al. [13] and Kinnally and Williams [14] has been successfully used in investigation of existence of invariant
measures for a wide range of functional SDEs, such methods are difficult to apply for neutral functional SDEs and functional
SDEs driven by jump processes. Recently, Bo and Yuan [15] developed an approach from Rökner and Zhang [17] to cope with
the case of functional SDEs driven by Poisson jump processes. However, their techniques are difficult to apply for neutral
functional SDEs and cannot be generalized to infinite-dimensional SPDEs driven by jump processes because their approach
is dimension dependent (see [15, p. 12]).

By Doob’s theorem [8, Theorem 4.2.1, p. 43], Reiß et al. [18] obtained uniqueness of invariant measures for a class of
linear functional SDEs with non-delayed diffusion coefficients, where the semigroup generated by the segment process is
strong Feller. However, if the diffusion term depends on the past history, the semigroup generated by the segment process
cannot be expected to be strong Feller; see Hairer et al. [19]. For such cases, Doob’s theorem does not work for obtaining
uniqueness of invariant measures. Recently, by an asymptotic coupling approach, Hairer et al. [19] addresses this problem
for functional SDEs, where the diffusion coefficient is dependent on the segment, non-degenerate, uniformly bounded for
the corresponding inverse, under some appropriate conditions, which may not ensure existence of an invariant measure
[19, Remark 3.2, p. 237].

In this paper, under certain dissipative conditions, we present a unified approach (the remote start method or dissipative
method) to establish the existence and uniqueness of invariant measures and the exponential ergodicity of the associated
transition semigroups for several kinds of functional SDEs, which include functional SDEs with variable delays, neutral
functional SDEs and functional SDEs driven by jump processes. Moreover, our method can also cover some infinite-
dimensional semi-linear functional SPDEs driven by jump processes (such as cylindrical α-stable processes).

The rest of the paper is organized as follows. Using the remote start method, Section 2 presents the ergodicity for
several kinds of functional SDEs including functional SDEs with variable delays, neutral functional SDEs and functional SDEs
driven by Lévy processes, Section 3 focuses on the SPDE cases, and Section 4 provides a couple of examples of using the
derived ergodicity to stochastic approximation and optimization problems. Before proceeding further, a few words about
the notation are in order. Generic constants will be denoted by c; we use the shorthand notation a . b to mean a ≤ cb. If
the constant c depends on a parameter p, we shall also write c(p) and a.p b.

2. Ergodicity for functional SDEs

For each strictly positive integer n, let Rn be an n-dimensional Euclidean space endowedwith the inner product ⟨u, v⟩ :=n
i=1 u

ivi for u, v ∈ Rn and the Euclidean norm |u| := ⟨u, u⟩1/2 for u ∈ Rn. Let Rn
⊗ Rm denote the collection of all

n × m matrices with real entries and Aij means the entry of the ith row and the jth column. Given an n × m matrix A,

∥A∥HS :=

n
i=1
m

j=1 A
2
ij

1/2
denotes the Frobenius norm of A. For any two metric spaces E1,E2, let C(E1; E2) denote the

set of continuous functions from E1 into E2. Here, E1 will often be a closed interval I ⊂ (−∞,∞), and E2 will often be
Rn for various dimensions n. Fix τ ∈ (0,∞), which will be referred to as the delay or time lag. Let C := C([−τ , 0]; Rn)
equipped with the uniform norm ∥ζ∥∞ := sup−τ≤θ≤0 |ζ (θ)| for ζ ∈ C . For X(·) ∈ C([−τ ,∞); Rn) and t ≥ 0, define the
segment process Xt ∈ C by Xt(θ) := X(t + θ), θ ∈ [−τ , 0]. It should be pointed out that X(t) ∈ Rn is a point, while Xt ∈ C

is a continuous function on the interval [−τ , 0] taking values in Rn. By a filtered probability space, we mean a quadruple
(Ω,F , {Ft}t≥0, P), where F is a σ -algebra on the outcome space Ω , P is a probability measure on the measurable space
(Ω,F ), and {Ft}t≥0 is a filtration of sub-σ -algebra ofF , where the usual conditions are satisfied, i.e., (Ω,F , P) is a complete
probability space, and F0 contains all P-null sets of F and, for each t ≥ 0, Ft+ := ∩s>t Fs = Ft . Let {W (t)}t≥0 be an m-
dimensional Brownian motion defined on the filtered probability space (Ω,F , {Ft}t≥0, P). The notation P (C ) denotes the
family of all probability measures on (C ,B(C )),Bb(C ) means the set of all bounded measurable functions F : C → R
endowed with the norm ∥F∥0 := supφ∈C |F(φ)|, and µ(·) stands for a probability measure on [−τ , 0]. For any F ∈ Bb(C )

and π(·) ∈ P (C ), let π(F) :=


C
F(φ)π(dφ).

2.1. Ergodicity for functional SDEs driven by Wiener processes

Consider a functional SDE

dX(t) = b(Xt)dt + σ(Xt)dW (t), t > 0 (2.1)

with the initial data X0 = ξ ∈ C , where b : C → Rn, σ : C → Rn
⊗ Rm are measurable, locally bounded and continuous.

Throughout this subsection, we assume that the initial value ξ ∈ C is independent of {W (t)}t≥0.
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