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a b s t r a c t

In this paper, we study degenerate elliptic equations with variable exponents when a
perturbation term satisfies the Ambrosetti–Rabinowitz condition and does not satisfy the
Ambrosetti–Rabinowitz condition. For the first case, we employ the standard Mountain
Pass theorem to give the existence of solutions. For the second case, we use Browder’s
theorem for monotone operators to show the unique existence of a solution when the
perturbation term is decreasing with respect to a function variable. A priori bound and
nonnegativeness of solutions are also given.We emphasize that the log-Hölder continuous
condition is not required.
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1. Introduction

We are concerned with the existence and uniqueness of solutions for the degenerate p(x)-Laplacian with Dirichlet
boundary condition as follows;

− div

w(x)|∇u|p(x)−2

∇u


= f (x, u) inΩ,
u = 0 on ∂Ω, (1.1)

where Ω is a bounded domain in RN with Lipschitz boundary ∂Ω, the variable exponent p : Ω → (1,∞) a continuous
function andw a measurable positive a.e. finite function inΩ and f : Ω × R → R satisfies a Carathéodory condition.

Recently,manymathematicians have intensively studied p(x)-Laplacian [1–11]which is dealingwith nonsmooth growth.
p(x)-Laplacian can be found in the areas, electro-rheological fluids [12], the thermistor problem [13], or the problemof image
recovery [2]. When w is not bounded and/or not separated from zero, w is called degenerate (or singular). A degenerated
second order linear differential operator was basically due to Murthy and G. Stampacchia [14] and higher order linear
degenerated elliptic operators were extended in the 80s and quasilinear elliptic equations including p-Laplacian were
developed in the 90s (see [15]). Degenerate phenomena appear in the area of oceanography, turbulent fluid flows, induction
heating, and electrochemical problems.
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The goal of this paper is to get the various existence and uniqueness results of solutions for (1.1) under suitable conditions
ofw and f . Fortunately, Kim, Wang and Zhang [16] have shown good properties of a function space, the so-called weighted
variable exponent Lebesgue–Sobolev spaces (see Section 2). We shall employ the standard Mountain Pass theorem when f
satisfies the Ambrosetti–Rabinowitz condition ((AR)-condition) [17] as usual. It is worth noting that the growth condition
of the paper is a little different from that of [18] and we do not assume that the exponent p(x) is log-Hölder continuous,
i.e., there is a constant C such that

|p(x)− p(y)| ≤
C

− log |x − y|
(1.2)

for every x, y ∈ Ω with |x − y| ≤ 1/2. Besides, we shall show the unique existence of solutions for (1.1) using Browder’s
theorem for monotone operators in the reflexive Banach spaces when f is nonincreasing with respect to the u-variable.
Finally, we shall show that a weak solution of (1.1) is bounded under a little restricted conditions of w and f adopting the
De Giorgi iteration and localization method. Using this fact and the cut-off method, we shall prove the nonnegativeness of
the solution for (1.1).

One of the novelties of this paper is that we do not assume that p(x) is log-Hölder continuous. When p(x) is log-Hölder
continuous, an easier proof for Lemma 4.1 can be given. The other one is to give a suitable condition of w to guarantee a
continuous imbedding which completes the De Giorgi iteration argument and obtains an a-priori bound of a weak solution
for (1.1). Unlike the constant variable exponent case, the case of ps(x) ≥ N (see, Section 2 for the definition) is not obvious.
So we needmore arguments to complete in some steps. Finally, we try to make the paper self-contained, that is, we give the
detailed proof to understand easily.

This paper is organized as follows. In Section 2, we define the weighted variable exponent Lebesgue–Sobolev spaces
and list properties of that space. In Section 3, we show the existence of a solution for (1.1) in two cases; with the (AR)-
condition, and without the (AR)-condition using the Mountain Pass theorem and Browder’s theorem, respectively. In
Section 4, employing the De Giorgi iteration and localization method, we obtain an a priori bound of a weak solution for
(1.1). Finally, we prove that a solution of (1.1) is nontrivial and nonnegative in Section 5.

2. Abstract framework and preliminary results

In this section, we define the weighted variable exponent Lebesgue–Sobolev spaces and list properties of that space.
Since the variable exponent Lebesgue–Sobolev spaces Lp(x)(Ω) andW 1,p(x)(Ω)were thoroughly studied in [4–6,9], we shall
only review the weighted variable exponent Lebesgue–Sobolev spaces Lp(x)(w,Ω) and W 1,p(x)(w,Ω), which were studied
in [16].

LetΩ ⊂ RN be a bounded domain with Lipschitz boundary ∂Ω andw(x) be a weight function onΩ . Set

C+(Ω) =


p ∈ C(Ω) : min

x∈Ω
p(x) > 1


.

Let p ∈ C+(Ω) and denote

p−
:= min

x∈Ω
p(x), p+

:= max
x∈Ω

p(x).

For any p ∈ C+(Ω), we define the variable exponent Lebesgue space by

Lp(x)(w,Ω) =


u : Ω → R is measurable,


Ω

w(x)|u(x)|p(x)dx < ∞


.

Then Lp(x)(w,Ω) endowed with the norm

|u|Lp(x)(w,Ω) = inf


λ > 0 :


Ω

w(x)
u(x)λ

p(x) dx ≤ 1


,

becomes a normed space. When w(x) ≡ 1 we have Lp(x)(w,Ω) ≡ Lp(x)(Ω) and we use the notation |u|Lp(x)(Ω) instead of
|u|Lp(x)(w,Ω).

The following Hölder type inequality is useful for the next sections.

Proposition 2.1 ([5,9]). The space Lp(x)(Ω) is a separable, uniform convex Banach space, and its conjugate space is Lp
′(x)(Ω)

where 1/p(x)+ 1/p′(x) = 1. For any u ∈ Lp(x)(Ω) and v ∈ Lp
′(x)(Ω) we have

Ω

uv dx
 ≤


1
p−

+
1

(p′)−


|u|Lp(x)(Ω)|v|Lp′(x)(Ω) ≤ 2|u|Lp(x)(Ω)|v|Lp′(x)(Ω).

The modular of the space Lp(x)(w,Ω), which is the mapping ρ : Lp(x)(w,Ω) → R is defined by

ρ(u) =


Ω

w(x)|u(x)|p(x)dx, ∀u ∈ Lp(x)(w,Ω).
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