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a b s t r a c t

The Maxwell–Dirac equations with nonzero charge mass in one space dimension are stud-
ied under the Lorenz gauge condition. The global existence and uniqueness of the solution
in (L2loc(R

2
+
))2 × (L∞

loc(R
2
+
))2 for an initial value problem of Maxwell–Dirac equations are

proved.
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

We are concerned with the Maxwell–Dirac equations in one space dimension
(iγ µDµ + mI)Ψ = 0,
∂µFµν = Jν, (1.1)

under the Lorenz gauge condition

∂tA0 − ∂xA1 = 0, (1.2)

with 
Ψj(x, 0) = ψj(x) (j = 1, 2),
Aν(x, 0) = a0ν(x) (ν = 0, 1),
∂tAν(x, 0) = a1ν(x) (ν = 0, 1),

(1.3)

which satisfy the constraint

a10 − ∂xa01 = 0,

andψj ∈ L2loc(R
1), a0ν ∈ L∞

loc(R
1), a1ν ∈ L1loc(R

1). Here Dµ = ∂µ − iAµ is the covariant derivative and Fµν = ∂νAµ − ∂µAν is the
curvature associated with the gauge field Aµ ∈ R.Ψ denotes a two-spinor field defined on R1+1, Jν = Ψ Ďγ 0γ νΨ is a current
density and Ψ Ď

= (Ψ1,Ψ2) denotes the complex conjugate transpose of Ψ . ∂0 = ∂t , ∂1 = ∂x.
The Dirac gamma matrices are of the following:

γ 0
=


1 0
0 −1


, γ 1

=


0 1

−1 0


.
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The system (1.1) can be rewritten as follows,
∂tΨ1 + ∂xΨ2 = imΨ1 + iA0Ψ1 + iA1Ψ2,
∂tΨ2 + ∂xΨ1 = −imΨ2 + iA0Ψ2 + iA1Ψ1,

�A0 = |Ψ1|
2
+ |Ψ2|

2,

�A1 = −(Ψ2Ψ1 + Ψ1Ψ2),
∂tA0 − ∂xA1 = 0.

(1.4)

The global well-posedness of a classical solution for the Maxwell–Dirac system in R1+1 has been established in [2]. Many
works are devoted to study the existence and uniqueness of the solution in different functional spaces since then, see for
instance [1–11] and the references therein. Recently in [10] Huh proved the global well-posedness of the strong solutions for
theMaxwell–Dirac system (1.1) in R1+1, where he assumed that themass of charge is zero, that is,m = 0 in (1.1), and the so-
lutions can be obtained by the explicit formula. Form > 0, as far aswe know, there is no explicit formula for solutions. In this
paper we consider more general case than that in [10], that is, form ≥ 0 we will find the (Ψ , A) ∈ (L2loc(R

2
+
))2 × (L∞

loc(R
2
+
))2

which solves Eq. (1.4) with initial data (1.3) in the following sense and prove its uniqueness.

Definition 1.1. (Ψ , A) with Ψ ∈ L2loc(R
2
+
)× L2loc(R

2
+
) and A ∈ L∞

loc(R
2
+
)× L∞

loc(R
2
+
) is called a weak solution to (1.4) with the

initial data (1.3) provided that
t>0


Ψ1(φ1t + φ1x + imφ1)+ i(A0Ψ1 + A1Ψ2)φ1


dxdt =


∞

−∞

ψ1φ1(x, 0)dx,
t>0


Ψ2(φ2t + φ2x + imφ2)+ i(A0Ψ2 + A1Ψ1)φ2


dxdt =


∞

−∞

ψ2φ2(x, 0)dx,

and 
t>0


A0�φ3 − (|Ψ1|

2
+ |Ψ2|

2)φ3

dxdt =


∞

−∞


−a00φ3t(x, 0)+ a10φ3(x, 0)


dx,

t>0


A1�φ4 + (Ψ2Ψ1 + Ψ1Ψ2)φ4


dxdt =


∞

−∞


−a01φ4t(x, 0)+ a11φ4(x, 0)


dx,

and 
t>0
(A0φ5t + A1φ5x)dxdt =


∞

−∞

a00φ5(x, 0)dx,

for any φk ∈ C∞
c (R

2
+), k = 1, 2, 3, 4, 5. Here and in the sequel, by φ ∈ C∞

c (R
2
+) we denote that φ ∈ C∞(R2

+) with bounded
support in R2

+, where R2
+

= {(x, t)|t > 0, x ∈ R1
}.

We remark that a solution in the sense considered here is also a distributional solution in the standard sense.
In the sequel, we use the notations (L2loc)

2
= L2loc × L2loc and (L∞

loc)
2

= L∞

loc × L∞

loc etc. for simplification. Now the main
results are presented as follows.

Theorem 1.1. For the initial dataψj ∈ L2(R1) (j = 1, 2) and aµ = (a0µ, a
1
µ) ∈ L∞(R1)× L1(R1) (µ = 0, 1), there exists a global

weak solution (Ψ , A) to (1.4) with (1.3), which satisfy

Ψ = (Ψ1,Ψ2) ∈ C([0,∞); L2(R1)× L2(R1)),

and

A = (A0, A1) ∈ L∞(R1
× [0, T ])× L∞(R1

× [0, T ])

for any T > 0.

Theorem 1.2. For ψj ∈ L2loc(R
1) and aµ = (a0µ, a

1
µ) ∈ L∞

loc(R
1)× L1loc(R

1) (j = 1, 2, µ = 0, 1), there exists a unique global weak
solution (Ψ , A) to (1.4) with (1.3), which satisfy

Ψj ∈ L2loc(R
2
+
), Aµ ∈ L∞

loc(R
2
+
),

for j = 1, 2 and µ = 0, 1. Here and in the sequel, we denote R2
+

= {(x, t)|t > 0, x ∈ R1
}.

The remaining part of the paper is organized as follows. In Section 2, we rewrite (1.1) and (1.2) in the equivalent form
as (2.1)–(2.5) and present two theorems, Theorems 2.1 and 2.2, which are equivalent to main results, Theorems 1.1 and
1.2. In Section 3, based on Chadam’s result on the global H1 strong solution for (1.1)–(1.3) with initial data (ψ, a0ν, a

1
ν) ∈

(H1(R1))2 ×H1(R1)× L2(R1), we establish the key estimates in Lemmas 3.1 and 3.3 for classical solutions to (2.1)–(2.5), and
get the uniform boundness on the solutions. In Section 4, the precompactness of the approximate solutions {(un, vn, An

±
)}∞n=1

is proved via the estimates given in Lemmas 3.1 and 3.3. Then we can get a convergent subsequence of {(un, vn, An
±
)}∞n=1,
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