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a b s t r a c t

We study the two-dimensional magnetohydrodynamics system with generalized dissipa-
tion and diffusion in terms of fractional Laplacians. It is known that the classical magneto-
hydrodynamics system with full Laplacians in both dissipation and diffusion terms admits
a unique global strong solution pair. Making use of the special structure of the system in
the two-dimensional case, we show in particular that the solution pair remains smooth
whenwe have zero dissipation but only magnetic diffusion with its power of the fractional
Laplacian β > 3

2 .
© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and statement of results

We study the following magnetohydrodynamics (MHD) system:
∂u
∂t

+ (u · ∇)u − (b · ∇)b + ∇π + νΛ2αu = 0

∂b
∂t

+ (u · ∇)b − (b · ∇)u + ηΛ2βb = 0

∇ · u = ∇ · b = 0, (u, b)(x, 0) = (u0, b0)(x)

(1)

whereu : RN
×R+

→ RN represents the velocity vector field, b : RN
×R+

→ RN themagnetic vector field,π : RN
×R+

→ R
the pressure scalar field and ν, η ≥ 0 are the kinematic viscosity and diffusivity constants respectively. We also let f̂ (ξ)
denote the Fourier transform of f ; i.e.

f̂ (ξ) =


RN

f (x)e−ix·ξdx

and defined a fractional Laplacian operator Λ2γ with γ ∈ R to have the Fourier symbol of |ξ |
2γ ; that is,

Λ2γ f (ξ) = |ξ |
2γ f̂ (ξ).
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In case N = 2, 3, ν, η > 0, α = β = 1, the MHD system possesses at least one global L2 weak solution for any initial
data pair (u0, b0) ∈ L2(RN) × L2(RN); in case N = 2, in fact the solution is unique (cf. [1]).

In order to discuss the previous results on strong solutions and better understand the importance of the lower bounds
for the two parameters α, β > 0 when ν, η > 0, let us recall the notion of criticality in a simple setting. First, it can be
shown that the solution pair to (1) with α = β = γ has the rescaling properties that if (u(x, t), b(x, t)) solves the system,
then so does (uλ(x, t), bλ(x, t)) with λ ∈ R+ where

uλ(x, t) = λ2γ−1u(λx, λ2γ t), bλ(x, t) = λ2γ−1b(λx, λ2γ t), γ ∈ R+.

Aswe show in (4), the solution pair (u, b) to (1) has the global bounds on the L2-norm and it can be shown that γ =
1
2 +

N
4

implies
∥uλ(·, t)∥L2(RN ) = ∥u(·, λ2γ t)∥L2(RN ), ∥bλ(·, t)∥L2(RN ) = ∥b(·, λ2γ t)∥L2(RN ).

With this in mind, we call the case ν, η > 0, α ≥
1
2 +

N
4 , β ≥

1
2 +

N
4 the critical case and in such a case, the existence of

the unique global strong solution pair has been shown (cf. [2]).
Some numerical analysis results (e.g. [3,4]) indicate amore dominant role played by the velocity vector field in preserving

the regularity of the solution pair. Moreover, starting from the works of [5,6], we have also seen various regularity criteria
of the MHD system in terms of only the velocity vector field (e.g. [7–14]). This is largely due to the fact that upon taking
H1-estimates of u and b, every nonlinear term involves u while not necessarily b. With this in mind, following the work
of [15], the author in [16] showed that even in logarithmically super-critical case the system (1) still admits a unique global
strong solution pair. That is, the author replaced the dissipative term of νΛ2αu and the diffusive term of ηΛ2βb by νL2

1u
and ηL2

2b respectively where Li, i = 1, 2 are defined to have the Fourier symbols ofmi(ξ), i = 1, 2 satisfying the following
lower bounds:L1u(ξ) = m1(ξ)û(ξ), L2b(ξ) = m2(ξ)b̂(ξ)

and

m1(ξ) ≥
|ξ |

α

g1(ξ)
, m2(ξ) ≥

|ξ |
β

g2(ξ)
, α ≥

1
2

+
N
4

, β > 0, α + β ≥ 1 +
N
2

with gi ≥ 1, i = 1, 2 being radially symmetric, non-decreasing functions.
The endpoint case ν > 0, η = 0, α = 1+

N
2 was also completed recently in [17] (cf. also [18] for further generalization).

On the other hand, in caseN = 2, it is well-known that the Euler equation, the Navier–Stokes systemwith no dissipation,
admits a unique global strong solution. This is due to the fact that upon taking a curl, the vorticity becomes a conserved
quantity. In the case of the MHD system, upon taking a curl and L2-estimate of the resulting system, every nonlinear term
has b involved. Exploiting this observation and divergence-free conditions, the authors in [19] showed that in case N = 2,
full Laplacians in both dissipation and magnetic diffusion are not necessary for the solution to remain smooth; rather, only
a mix of partial dissipation and diffusion in the order of two derivatives suffices. In this paper we make further observation
in case N = 2:

Theorem 1.1. Let N = 2, ν = 0, η > 0, α = 0, β > 3
2 . Then for all initial data pair (u0, b0) ∈ Hs(R2) × Hs(R2), s ≥ 1 + 2β ,

there exists a unique global strong solution pair (u, b) to (1) such that

u ∈ C([0, ∞);Hs(R2))

b ∈ C([0, ∞);Hs(R2)) ∩ L2([0, ∞);Hs+β(R2)).

Theorem 1.2. Let N = 2, ν, η > 0, α ∈

0, 1

2


, β ∈

 5
4 ,

3
2


such that α + 2β > 3. Then for all initial data pair

(u0, b0) ∈ Hs(R2) × Hs(R2), s ≥ 1 + 2β , there exists a unique global strong solution pair (u, b) to (1) such that

u ∈ C([0, ∞);Hs(R2)) ∩ L2([0, ∞);Hs+α(R2))

b ∈ C([0, ∞);Hs(R2)) ∩ L2([0, ∞);Hs+β(R2)).

Remark 1.1. (1) Our proof was inspired partially from the work of [19,20,8]. We note that making use of the structure of
the partial differential equation has proven to be useful in other cases as well (e.g. [21]).

(2) While this paper was being prepared, the work by [22] appeared. In their work, it is shown that in particular if α = 0,
then β > 2 is required (see Theorem 1 and Remark 1 of [22]) while our Theorem 1.1 shows that β > 3

2 suffices. We also
independently obtained Theorem A.1; this is no longer a new result and thus we placed this in the Appendix because its
proof is immediate and very simple. The hypothesis of Theorem A.1 allows α ≥

1
2 rather than α = 0 as in Theorem 1.1.

As will be discussed, a complete lack of dissipation makes the analysis significantly more difficult in the latter case.
(3) There are ways to obtain different initial regularity in various space of functions; we chose to state the above for

simplicity. We also refer readers to [19] where the authors considered the case N = 2, ν = 0, η > 0, β = 1 and
showed the existence of weak solution pair and regularity criteria for its global regularity and uniqueness (cf. also [2]).

(4) To extend such a type of result to higher dimension, it seems to require a new idea. As indicated in the work of [16,17],
in higher dimension, dissipation seems to be crucial in preserving the regularity of the solution pair.

In the Preliminary section, let us briefly set up notations and state key lemmas; thereafter, we prove our theorems.
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