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a b s t r a c t

We study the hyperbolic mean curvature flow (HMCF) of graphs in Minkowski space. A
quasilinear wave equation is derived and studied for the motion of smooth immersed
spacelike acausal closed curves under HMCF. Based on this, we investigate the formation of
singularities in the motion of these curves. Some blow-up results have been obtained and
the estimates on the life-span of the solutions are given. Furthermore, our results show that
the curvature of the limit curve become unbounded as t → Tmax.

© 2013 Published by Elsevier Ltd

1. Introduction

Minkowski space R1,1 is the linear space R1+1 endowed with the Lorentz metric

ds2 = dx2 − dy2.

Spacelike curves in R1,1 are Riemannian 1-manifolds, having an everywhere lightlike normal vector ν⃗ which assume to be
future directed and thus satisfy the condition ⟨ν⃗, ν⃗⟩ = −1. Locally, such curves can be expressed as graphs of functions
y = f (x) : R → R satisfying the spacelike conditions |fx| < 1 for all x ∈ R.

If a family of spacelike embeddings γt = γ (·, t) : S1 → R1,1 with corresponding curves Mt = γ (S1, t) satisfy the
following evolution equation

∂2γ

∂t2
(z, t) = k(z, t)ν⃗(z, t) + ρ(z, t)T⃗ (z, t), ∀ γ : S1 × [0, T ) → R1,1,

γ (z, 0) = γ0(z),
∂γ

∂t
(z, 0) = h(z)N⃗0,

(1.1)

where k denotes the mean curvature of the curveMt , ν⃗ is the unit inner normal vector ofMt , the function ρ is defined by

ρ = −


∂2γ

∂s∂t
,
∂γ

∂t


(1.2)
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in which s is the arclength parameter, T⃗ stands for the unit tangent vector of γt , γ0 denotes the initial closed curve, while
h and ν⃗0 are the initial velocity and unit inner normal vector of initial curve γ0, respectively. Clearly, the initial velocity
is normal to the initial curve, and at the beginning of Section 2 we will show that the flow described by (1.1) is always
normal one. On the other hand, it is easy to see that (1.1) is an initial value problem for a system of second-order hyperbolic
differential equations. Similar to [1], we can prove the following theorem.

Theorem A (Local Existences and Uniqueness). Let γ0 be a smooth spacelike acausal closed curve immersion of S1 into R1,1, and
∂γ

∂t (z, 0) be an initial velocity. Then there exist a positive T and a family of smooth spacelike acausal closed curves γ (·, t) with
t ∈ [0, T ) such that the Cauchy problem (1.1) admits a unique smooth solution γ (·, t) on S1, provided that h(z) is a smooth
function on S1.

Traditionally, mean curvature flow (MCF) has been extensively studied in Euclidean space; see [2–7], and the references
therein, while in Minkowski space, MCF was studied in [8,9] for compact hypersurfaces and in [10,11] for noncompact
hypersurfaces. The method of MCF was used [8,9] to construct spacelike hypersurfaces with prescribed mean curvature,
which, as it is well-known, have played important roles in studying Lorentzian manifolds. In 2001, Huisken and Ilmanen
introduced the inverse mean curvature flow (IMCF), developed a theory of weak solutions of the IMCF and used this theory
to prove successfully the Riemannian Penrose inequality which plays an important role in general relativity (see [12]).

However, to our knowledge, there is very few hyperbolic versions of mean curvature flow. The hyperbolic version of
mean curvature flow is important in bothmathematics and applications, and has attractedmanymathematicians to study it
(e.g., [13–16]). Recently, Kong and Liu introduced the hyperbolic geometric flowwhich is an attempt to solve some problems
arising from differential geometry and theoretical physics (in particular, general relativity). The hyperbolic geometric flow
is a very natural tool to understand the wave character of the metrics, wave phenomenon of the curvatures, the evolution of
manifolds and their structures (see [17,18,1,19–23]). Contrast to the hyperbolic mean curvature flows studied in [1,21,24],
hyperbolic gauss curvature flow [25] is proposed for convex hypersurfaces. The equation satisfied by the graph of the
hypersurface under this flow gives rise to a new class of fully nonlinear Euclidean invariant hyperbolic equations.

In this paper we particularly investigate the formation of singularities of the evolution of convex closed spacelike curves
under hyperbolic mean curvature flow in the Minkowski space R1,1. We shall prove that the smooth solution of the Cauchy
problem (1.1) will, in general, blow up in finite time, provided that the perimeter of the initial closed curve and the initial
velocity is suitably small, or the initial data satisfies some additional (but not smallness) assumptions. Furthermore, our
results show that the curvature of the limit curve become unbounded as t → Tmax. See Section 3 for the detailed blowup
results.

The paper is organized as follows. In Section 2, we derive a second-order quasilinear wave equation, and by constructing
the Riemann invariants we reduce the wave equation to a reducible quasilinear hyperbolic system of first order, based on
this, we analyze some interesting properties enjoyed by this system. The main results are stated in Section 3. Section 4–5
are devoted to the proof of the main results.

2. Basic equations: derivation and properties

We first illustrate the flow described by (1.1) is normal one.
In fact, noting

∂

∂t


∂γ

∂t
,
∂γ

∂z


=


∂2γ

∂t2
,
∂γ

∂z


+


∂γ

∂t
,

∂2γ

∂z∂t


=


ρT⃗ ,

∂γ

∂z


+


∂γ

∂t
,

∂2γ

∂z∂t


= −


∂F
∂t

,
∂2γ

∂z∂t


+


∂F
∂t

,
∂2γ

∂z∂t


= 0,

we have
∂γ

∂t
,
∂γ

∂z


(z, t) =


∂γ

∂t
,
∂γ

∂z


(z, 0) = 0.

This implies that, if the initial velocity field is normal to the initial curve, then this property is preserved during the evolution.
Therefore, noting the third equation in (1.1) we observe that the flow under consideration is normal one.

Locally, such curves can be expressed as graphs of functions u(x, t) : R → R satisfying the spacelike conditions |ux| < 1
for all x ∈ R. Then we can write γ as

γ (z, t) = (x, u(x, t)), ∀ x ∈ R.

Thus, we have

∂γ

∂t
=

dx
dt

(1, ux) +


0,

∂u
∂t


. (2.1)
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