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a b s t r a c t

The nonlinear stability of laminar flow, in the x-direction, between two parallel planes
in the presence of a coplanar magnetic field has been studied using Lyapunov direct
method with either rigid or stress-free boundary planes. By defining a Lyapunov function
it is proved that the laminar solutions of the system are nonlinearly unconditionally and
asymptotically stable for all Reynolds numbers and magnetic Reynolds numbers if the
perturbations are two-dimensional and depend only on y, z and t .

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Themost important part of the hydrodynamic stability theory is the investigation of how laminar flow becomes unstable.
Of the availablemethods of stability analysis, the Lyapunov directmethod is the best choice for the investigation of nonlinear
stability of laminar flow. The advantage of this method is that it gives sufficient conditions for the stability of the laminar
flow.

The Lyapunov direct method, also known as the generalized energy method, was first considered in the context of
hydrodynamic stability by Serrin [1], and subsequently used by Joseph [2] and other authors (see [3–8], and references
therein).

Here we study the nonlinear stability of the motion of an incompressible, homogeneous, viscous and electrically
conducting fluid in a horizontal layer, permeated by an imposed uniform magnetic field H coplanar to the layer. This
problem has previously been studied by other authors. In particular, in [9] the linear stability has been considered in the
case of rigid boundaries for large magnetic viscosity, and in [10,11] the nonlinear energy stability has been studied for one-
dimensional and two-dimensional perturbations in the isothermal and non-isothermal cases. In [7] the authors consider the
linear and nonlinear stability of the problem considering the stress-free boundary case for three-dimensional perturbations.
By choosing a Lyapunov function they showed that the laminar flow is linearly asymptotically exponentially stable if
Rm < π2/8M . By introducing another Lyapunov function they showed that the basic motion is nonlinearly conditionally
stable for all Reynolds numbers if the magnetic Reynolds number Rm satisfies Rm < π2/8M , where M is the maximum of
the absolute value of the velocity field of the laminar flow.

By applying the Lyapunov direct method, here we examine the nonlinear stability of laminar basic flow of the aforesaid
problem for x-independent perturbations. Cases with rigid and stress-free boundary planes are both examined. By taking
advantage of the poloidal–toroidal decomposition we can prove the unconditional stability of the laminar basic flow for
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all Reynolds numbers and magnetic Reynolds numbers. Thanks to the decomposition we can define a generalized energy
functional with lower-order derivatives than that of Mulone and Salemi, which enables us to consider the problem with
either the rigid or stress-free boundary condition.

The paper is organized as follows: Section 2 contains the laminar basic solutions, the perturbation equations, boundary
conditions and the poloidal–toroidal decomposition of a solenoidal vector field. In Section 3 the Lyapunov function is given
and a nonlinear stability theorem is formulated.

2. Mathematical formulation

Consider an infinite horizontal homogeneous viscous and electrically conducting fluid layer R2
× (−d, d) in a Cartesian

reference frame oxyz with unit vectors i, j , k respectively. The layer is assumed to be parallel to the xoy plane and the
velocities of the planes satisfy the boundary conditions: U(x, y, z,−d) = −V i and U(x, y, z, d) = V i. We assume that the
medium adjoining the fluid is electrically non-conducting and is permeated with a constant magnetic field H = H0i + H1j ,
where H0, H1 ∈ R, H0 ≠ 0.

The equations of motion, given in [12], admit the laminar solutions [7]:

U = f (z)i f (z) =
k
2ν
(d2 − z2)+

Vz
d

H = H0i + H1j
p1 = −kρ0x + p0,

where k, p0 ∈ R, ν is the kinematic viscosity, and ρ0 is the constant density.
The non-dimensional equations which govern a perturbation (u, h, p) to the laminar basic solutions (U ,H, p1) are [7]:

∂tu =
1
Re
∆u − wf ′(z)i − f (z)∂xu − ∇λ− u · ∇u + Am[H0∂xh + H1∂yh + h · ∇h]

∂th =
1
Rm
∆h + h3f ′(z)i − f (z)∂xh − u · ∇h + H0∂xu + H1∂yu + h · ∇u

∇ · u = 0
∇ · h = 0

(1)

in R2
× (−1, 1) × (0,+∞), where u = (u, v, w), h = (h1, h2, h3), λ =

p
ρ0

+
Am|H+h|

2

2 , Re =
v0d
ν

is the Reynolds number,

Rm =
v0d
η

is the magnetic Reynolds number, Am =
Q 2

ReRm
with the Chandrasekhar number Q 2 given by Q 2

=
µH2d2

ρ0νη
, v0 is an

assigned reference velocity and H is the externally impressed uniform magnetic field, η is the magnetic viscosity and µ the
magnetic permeability.

To the Eqs. (1) we add the initial conditions

u(x, y, z, 0) = u0(x, y, z), h(x, y, z, 0) = h0(x, y, z) on z = ±1

and the boundary conditions

u = 0, h = 0 on z = ±1, ∀t > 0 (2)

in the case of rigid boundaries, and

∂zu = 0, ∂zv = 0, w = 0 on z = ±1, ∀t > 0 (3)

in the case of stress-free boundaries.
We assume that the perturbations are x, y periodic with respect to a rectangle P = [−

π
ax
, πax

] × [−
π
ay
, πay

] with wave
numbers ax and ay in the x and y directions, respectively.

To exclude the rigid motions of the system in the case of stress-free boundaries we have the additional conditions
Ω

u dx dy dz =


Ω

v dx dy dz = 0 withΩ = P × [−1, 1].

In order to eliminate the term ∇λ in Eqs. (1) and to obtain variables more appropriate for the definition of Lyapunov
function, the following poloidal–toroidal decomposition is applied to the solenoidal periodic fields u and h [8,13–15]:

u = ∇ × (∇ϕ × k)+ ∇ψ × k + f = δϕ + εψ + f
h = ∇ × (∇ϕ(m) × k)+ ∇ψ (m)

× k + f (m) = δϕ(m) + εψ (m)
+ f (m).

where δ· = (∂xz ·, ∂yz ·,−∆2·), ε· = (∂y·,−∂x·, 0 ), ∆2 = ∂2x + ∂2y , f = (f1, f2, f3), f (m) = (f (m)1 , f (m)2 , f (m)3 ). The functions
ϕ, ψ , ϕ(m), and ψ (m) are uniquely determined if we require them to be periodic with respect to P and to have vanishing
mean value over P . The first part of the decomposition of u and h is called the poloidal part and the second one the toroidal
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