# The regularity of the distance function propagates along minimizing geodesics 

P. Albano

Dipartimento di Matematica, Università di Bologna, Piazza di Porta San Donato 5, 40127 Bologna, Italy

## A R T I C L E I N F O

## Article history:

Received 27 June 2013
Accepted 15 August 2013
Communicated by Enzo Mitidieri

## MSC:

35F30
35F21
35D40

## Keywords:

Eikonal equation
Distance function
Generalized gradient flow
Cut-locus
Viscosity solutions


#### Abstract

We consider the distance function from the boundary of an open bounded set $\Omega \subset \mathbb{R}^{n}$ associated to a Riemannian metric with $C^{1,1}$ coefficients. We show that the $C^{1,1}$ regularity propagates, towards the boundary $\partial \Omega$, along the distance minimizing geodesics. Hence, we show that the cut-locus is invariant with respect to the generalized gradient flow associated to the distance function and that it has the same homotopy type as $\Omega$.


© 2013 Elsevier Ltd. All rights reserved.

## 1. Introduction and statement of the results

Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded set and let $d$ be the viscosity solution of the equation

$$
\begin{cases}\langle A(x) D d, D d\rangle=1 & \text { in } \Omega  \tag{1.1}\\ d=0 & \text { on } \partial \Omega\end{cases}
$$

Here $A(\cdot)$ is a $n \times n$ symmetric matrices valued function, $D d$ is the gradient of $d$ and $\langle\cdot, \cdot\rangle$ the Euclidean scalar product. A continuous function, $d: \Omega \rightarrow \mathbb{R}$, is a viscosity solution ${ }^{1}$ of (1.1) iff for every $\varphi$ of class $C^{1}$ and every $x \in \Omega$ such that $d-\varphi$ has a local minimum at $x$ we have

$$
\langle A(x) D \varphi(x), D \varphi(x)\rangle=1
$$

We assume that

$$
\begin{equation*}
A(\cdot) \text { is positive definite and } A(\cdot) \text { is of class } C^{1,1} . \tag{1.2}
\end{equation*}
$$

We need the following
Definition 1.1. A continuous function $u$ is semiconcave in $\Omega$ if there exists a positive constant $C$ such that $D^{2} u \leq C I$ in $\mathscr{D}^{\prime}(\Omega)$. Furthermore, $u$ is locally semiconcave in $\Omega$ if $u$ is semiconcave in every $U \subset \subset \Omega$.

[^0]Remark 1.1. A semiconcave function can be locally written as the sum of a concave function with a $C^{1,1}$ function (in particular, a semiconcave function is locally Lipschitz continuous). Hence, in general, a semiconcave function is not globally differentiable and may have singularities as a concave function.

We recall a regularity result for the viscosity solution of Eq. (1.1) (see [2] for a more general result).
Theorem 1.1. Under Assumption (1.2) the viscosity solution of (1.1) is semiconcave in $\Omega$.
We recall that the viscosity solution of Eq. (1.1) is the distance function from the boundary of $\Omega$ associated to the Riemannian metric $g_{x}(\xi, \xi)=\left\langle A^{-1}(x) \xi, \xi\right\rangle$ (see e.g. [3]), i.e. defining $\ell(x, z)$ as

$$
\inf \left\{T \geq 0 \mid \exists y \in W^{1, \infty}([0, T] ; \Omega) \text { s.t. } y(0)=x, y(T)=z,\left\langle A^{-1}(y(t)) y^{\prime}(t), y^{\prime}(t)\right\rangle \leq 1 t \text { a.e. in }[0, T]\right\}
$$

we have that

$$
d(x)=\inf _{z \in \partial \Omega} \ell(x, z)
$$

A distance minimizing geodesic starting at the point $x$ is a curve $y \in W^{1, \infty}([0, d(x)] ; \Omega)$ such that $\left\langle A^{-1}(y(t)) y^{\prime}(t), y^{\prime}(t)\right\rangle \leq 1$, for $t$ a.e. in $[0, d(x)]$, and $y(d(x)) \in \partial \Omega$. In particular, if $y$ is a distance minimizing geodesic starting at the point $x$ we have

$$
d(y(t))=d(x)-t, \quad t \in[0, d(x)]
$$

and, one can show that

$$
\begin{equation*}
d(y(t))=\ell(y(t), y(s))+d(y(s)) \quad 0 \leq t \leq s \leq d(x) \tag{1.3}
\end{equation*}
$$

In this perspective, our regularity assumptions mean that we are studying a Riemannian distance (i.e. $A^{-1}(\cdot)$ is a non degenerate matrix) and in the distance minimizing geodesics there are no interior branching points (this fact is a consequence of the $C^{1,1}$ regularity of $A^{-1}(\cdot)$.) Indeed, using an elementary modification of an example given in [4], for every $\left.\alpha \in\right] 0$, $1[$, one can construct a metric of class $C^{1, \alpha}$ such that the local uniqueness of geodesics fails, i.e. distance minimizing geodesics may have (interior) branching points. This can be done by taking as $\Omega \subset \mathbb{R}^{2}$ a neighborhood of the origin and, for every $\left.\alpha \in\right] 0,1[$,

$$
g_{x}(\xi, \xi)=\left(1+\frac{4}{(1-\alpha)^{2}}\left|x_{2}\right|^{1+\alpha}\right)\left(\xi_{1}^{2}+\xi_{2}^{2}\right)
$$

with $x=\left(x_{1}, x_{2}\right), \xi=\left(\xi_{1}, \xi_{2}\right) \in \mathbb{R}^{2}$. The singular set of $d$ is defined as follows

$$
\Sigma=\{x \in \Omega \mid d \text { is not differentiable at } x\} .
$$

We recall that the closure (in $\Omega$ ) of the singular set $\Sigma$ is the cut-locus, ${ }^{2} C_{A}(\Omega)$, i.e.

$$
C_{A}(\Omega)=\bar{\Sigma}
$$

We point out that, even if $\Sigma$ is not too large (i.e. it is countably $\mathscr{H}-(n-1)$ rectifiable) its closure may have positive $n$ dimensional Lebesgue measure. This phenomenon is a consequence of the low regularity setting we are working with. For an example of distance function in a convex set of the plane with boundary of class $C^{1,1}$ such that the closure of $\Sigma$ is of positive, 2-dimensional Lebesgue measure we refer the reader to the paper [5].

Remark 1.2. From an analytical point of view, the cut-locus is the singular support $C^{1}$ of $d$, i.e. $x \notin C_{A}(\Omega)$ iff there exists a neighborhood of $x, U$, such that $d \in C^{1}(U)$. We recall that a more precise regularity result holds: if $d$ is differentiable in an open set $U$ then $d \in C^{1,1}(U)$ (see e.g. [2]). In particular, we deduce that the $C^{1}$ and the $C^{1,1}$ singular supports coincide.

For a comparison between different notions of cut-locus see e.g. [6].
In the next result we collect some known properties of the distance minimizing geodesics.

## Proposition 1.1. We assume Condition (1.2).

(1) For every $x \in \Omega$ there exists a minimizing geodesic starting at $x$. Furthermore, $d$ is differentiable along the distance minimizing geodesics possibly except at the end points and

$$
\begin{equation*}
\left.y^{\prime}(t)=-A(y(t)) \operatorname{Dd}(y(t)), \quad t \in\right] 0, d(y(0))[ \tag{1.4}
\end{equation*}
$$

for every distance minimizing geodesic, $y(\cdot)$, starting at the point $y(0)$.
(2) For every $x \in \Omega \backslash \Sigma$ there exists a unique distance minimizing geodesic starting at $x, y(\cdot ; x):[0, d(x)[\longrightarrow \Omega$.
(3) Let $x_{n} \in \Omega$ be a sequence of points such that $\lim _{n \rightarrow \infty} x_{n}=x \in \Omega \backslash \Sigma$. Let $y\left(\cdot ; x_{n}\right)$ be a sequence of distance minimizing geodesics. Then there exists $\lim _{n \rightarrow \infty} y\left(\cdot ; x_{n}\right)$ and it is the distance minimizing geodesic starting at the point $x$.
(4) For every $x, z \in \Omega$ let $y(\cdot ; x)$ and $y(\cdot ; z)$ be two distance minimizing geodesics starting at $x$ and $z$ respectively. Then

$$
\{y(s ; x) \mid s \in] 0, d(x)[ \} \cap\{y(s ; z) \mid s \in] 0, d(z)[ \}=\emptyset .
$$

[^1]
# https://daneshyari.com/en/article/840039 

Download Persian Version:

## https://daneshyari.com/article/840039

## Daneshyari.com


[^0]:    E-mail addresses: albano@dm.unibo.it, paolo.albano@unibo.it.
    1 We point out that our definition of viscosity solution is not the usual one for general first order Hamilton-Jacobi equations. On the other hand, it is well-known (see e.g. [1]) that, in the case of Hamiltonians, convex with respect to the gradient, the usual definition is equivalent to ours.

[^1]:    2 It is the closure of the points which are starting points of more than one distance minimizing geodesics with different tangents at the starting point.

