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a b s t r a c t

In this paper, we are concerned with the Boltzmann equation for the mixture of vapors
of two gases in the whole space. Given the initial data of one gas near vacuum and the
other near a global Maxwellian state, we obtain the global existence and optimal large
time behaviors of the Boltzmann system for such binary mixture. The proof is based on
Kawashima’s compensating function technique and a refined energy method.

© 2013 Published by Elsevier Ltd

1. Introduction

1.1. System for gas mixtures

Consider a binary mixture of hard-sphere gases: gas A and gas B. The Boltzmann equation for such gases takes the form
of the following system:

∂tFA + ξ · ∇xFA = Q (FA, FA) + Q (FA, FB),
∂tFB + ξ · ∇xFB = Q (FB, FB) + Q (FB, FA).

(1.1)

The right-hand side represents the usual elastic collision terms which for X, Y ∈ {A, B} are given by

Q (FX , FY ) =


R3×S2

+

|(ξ − ξ∗) · σ |

F ′

XF
′

Y∗
− FXFY∗


dξ∗dσ .

Here S2
+

= {σ ∈ S2
: (ξ − ξ∗) · σ ≥ 0}, [FX , FY ] = [FX (t, x, ξ), FY (t, x, ξ)] (use [·, ·] to denote the column vector) are

non-negative and stand for the number densities of gas A and gas B which have position x = (x1, x2, x3) ∈ R3 and velocity
ξ = (ξ1, ξ2, ξ3) ∈ R3 at time t ≥ 0. [F ′

X , F
′

Y∗
] = [FX (t, x, ξ ′), FY (t, x, ξ ′

∗
)]; the post-collision velocities ξ ′ and ξ ′

∗
are given by

the formulas
ξ ′

= ξ + ((ξ∗ − ξ) · σ)σ ,
ξ ′

∗
= ξ∗ − ((ξ∗ − ξ) · σ)σ .
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Observe that the mapping (associated with the operator Q ) (ξ , ξ∗) → (ξ ′, ξ ′
∗
) is an involution which preserves (the mass,)

the momentum and the energy
ξ ′

+ ξ ′

∗
= ξ + ξ∗,

|ξ ′
|
2
+ |ξ ′

∗
|
2

= |ξ |
2
+ |ξ∗|

2.

The initial data of the system (1.1) is given by

[FA(0, x, ξ), FB(0, x, ξ)] = [FA,0(x, ξ), FB,0(x, ξ)].

Notice that all the physical parameters, such as the particle masses and the radii of the molecules, and all other involving
constants have been chosen to be unit for the simplicity of presentation.

1.2. Reformulation

In the framework of theBoltzmannequation, Takata–Aoki [1] first investigate the condensation–vaporizationproblem for
themixture of vapors of different species. Andmany interesting physical problems existing for this important phenomenon,
such as the ‘‘ghost effect’’ and ‘‘Knudsen layer’’ for a gas mixture, have been illustrated [2,3].

This paper is concerned with the phenomena related to vapor–vapor mixtures. Our discussion is mainly based on the
elementary phenomenon ofmass diffusion of a finite amount of gas A dissolved into the surrounding B. From this viewpoint,
we write

FA = fA
√

µ, for gas with finite total mass amount,
FB = µ + fB

√
µ, for gas in the background,

where the normalized global Maxwellian is defined as

µ = µ(ξ) = (2π)−3/2e−|ξ |
2/2.

Then the Cauchy problem (1.1) can be reformulated as

∂t fA + ξ · ∇xfA + L1fA = Γ (fA, fA) + Γ (fA, fB), (1.2)
∂t fB + ξ · ∇xfB + L0fB + K1fA = Γ (fB, fB) + Γ (fB, fA), (1.3)

with initial data

[fA(0, x, ξ), fB(0, x, ξ)] = [fA,0(x, ξ), fB,0(x, ξ)]. (1.4)

Here the linearized collision terms Lig (i = 0, 1) and the nonlinear collision operator Γ (g, h) are respectively defined by

L0g = −

µ−1/2Q (µ1/2g, µ) + µ−1/2Q (µ, µ1/2g)


,

L1g = −µ−1/2Q (µ1/2g, µ),

K1g = −µ−1/2Q (µ, µ1/2g),

Γ (g, h) = µ−1/2Q (µ1/2g, µ1/2h). (1.5)

1.3. Macro projections, notations and norms

It is easy to see that the null spaces of the linearized operators L0 and L1 are given by

N0 = span

µ1/2, ξiµ

1/2 (1 ≤ i ≤ 3), |ξ |
2µ1/2

and

N1 = span

µ1/2 ,

respectively.
Let P0 and P1 be the orthogonal projections from L2ξ to N0 and N1 respectively. Given fX (t, x, ξ) (X ∈ {A, B}), one can

write P0 and P1 as

P0fX = aX (t, x)µ1/2
+

3
i=1

bX,i(t, x)ξiµ1/2
+ cX (t, x)(|ξ |

2
− 3)µ1/2,

and

P1fX = aX (t, x)µ1/2,

where the coefficient functions are determined by fX in the way that

aX =

µ1/2, fX


, bX,i =


ξiµ

1/2, fX

, cX =

1
6


(|ξ |

2
− 3)µ1/2, fX


.
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