
Nonlinear Analysis 95 (2014) 676–690

Contents lists available at ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On the limit cycles of a class of Kukles type
differential systems
Roland Rabanal ∗
Departamento de Ciencias, Pontificia Universidad Católica del Perú, Av. Universitaria 1801, Lima 32, Peru

a r t i c l e i n f o

Article history:
Received 4 June 2013
Accepted 5 October 2013
Communicated by Enzo Mitidieri

MSC:
34C29
34C25
47H11

Keywords:
Limit cycle
Kukles systems
Averaging theory

a b s t r a c t

In this paper we study the limit cycles of two families of differential systems in the plane.
These systems are obtained by polynomial perturbations with arbitrary degree on the sec-
ond component of the standard linear center. The classes under consideration are polyno-
mial generalizations of certain canonical form of a Kukles systemwith an invariant ellipse,
previously studied in the literature. We provide, in both cases, an accurate upper bound of
the maximum number of limit cycles that the perturbed system can have bifurcating from
the periodic orbits of the linear center, using the averaging theory of first, second and third
order. These upper bounds are presented in terms of the degree of the respective systems.
Moreover, the existence of a weak focus with the highest order is also studied.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and statement of the results

One of the main problems in the qualitative theory of real planar differential systems is the determination of their
limit cycles, as defined by Poincaré [1]: existence, number and stability. For instance, the second part of the 16th Hilbert
problem [2,3] wants to find an upper bound on themaximum number of limit cycles that a polynomial vector field of a fixed
degree can have. We shall consider a very particular case, and we will try to give a partial answer to this problem for the
Kukles type systems: the polynomial differential systems of the form

ẋ = −y, ẏ = x + λy +

n
d=2

gd(x, y), (1.1)

where · =
d
dt , λ ∈ R and gd(x, y) ∈ R[x, y] is a homogeneous polynomial of degree d ∈ Z+.

These systems with λ = 0 has either a center or a weak focus at the origin. This singular point is a center, if there is
a neighborhood of the origin in which every orbit except the origin is periodic. Similarly, the origin is a focus, if it has a
neighborhood in which every orbit spirals towards or away from the origin. Thus, the research of (1.1) is closed related with
the classical problem of distinguishing between a center and a focus (the center-focus problem), and it is completely solved
only for linear and quadratic systems, and a few particular cases in families of higher degree. To describe the mentioned
property of the origin,we choose a one-sided analytic transversal at the originwith a local analytic parameterh and represent
the Poincaré return map by an expansion r(h) = h +


∞

i=0 vihi. Consequently, the stability of the origin is clearly given by
the sign of the first non-zero vi (a Lyapunov quantity). If all the vi are zero then the origin is a center. If the displacement
function δ(h) = r(h)−h is not flat (i.e. there exists i such that its ith derivative δ(i)(0) ≠ 0) we have aweak focus, thatmeans
a focus whose associated eigenvalues are pure imaginary. The origin is a weak focus of order k if vi = 0 for each i ≤ 2k, but
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v2k+1 ≠ 0. It is well-known that at most k limit cycles can bifurcate from a weak focus of order k under perturbation of the
coefficients of

n
d=2 gd(x, y). However, the major difficulty with the functions vi’s is their high complexity, and to find them

explicitly becomes a computational problem. For more details about the definitions and statements of this paragraph see,
for instance [4,5].

The research of (1.1) was initiated by Kukles [6], giving necessary and sufficient conditions in order that (1.1) with n = 3
has a center at the origin. This cubic systemwithout the term y3 is the so called reduced Kukles system. Under this restriction,
the authors of [7] present an exhaustive study of the center conditions given in [6]which are also important in the problemof
the full classification of cubic systemswith a center. It is also considered in [8], where the authors show that atmost five limit
cycles bifurcate from the origin and they construct a reduced Kukles systems in which this bound is realized. The authors
of [8] also solve the center-focus problem for the reducedKukles systems. In [9] appears a description of the local bifurcations
of critical periods in the neighborhood of a non-degenerate center of the reduced Kukles systems, and the authors describe
the isochronous systems. In [10], the authors study the number and distributions of the limit cycles for a family of reduced
Kukles system under cubic perturbations; by using techniques of bifurcation theory and qualitative analysis, they describe
three different distributions of five limit cycles for the systems considered. In [11], the author proves that some cubic systems
of the form (1.1) can have seven limit cycles and solve the center-focus problem for a new family of cubic Kukles systems.
In [12], we can find some interesting center characterizations of cubic systems, obtained by using symbolic calculations.
In [13] is studied (1.1) with λ = 0 and

n
d=2 gd(x, y) ∈ {g4(x, y), g5(x, y)}, for these homogeneous Kukles systems the

author studies the center conditions and the existence of small amplitude limit cycles. In [14] the authors consider a class
of cubic systems (1.1) having an invariant parabola, and they describe some parameters for which the invariant parabola
coexists with a center. It is complemented in [15] where the authors also present a cubic system of the form (1.1) with an
invariant hyperbola coexisting with two limit cycles. In short in all these studies (1.1) is at most a system with n = 5.

1.1. The Sáez–Szántó’s differential systems

We are particularly interested in studying the maximum number of small amplitude limit cycles of a class of Kukles type
systems which can coexist with closed invariant algebraic curves. It is initially studied in [16], where the authors describe
a class of quintic systems of the form (1.1) having an invariant conic, and they show the coexistence of small amplitude
limit cycles bifurcating from the origin with an algebraic limit cycles given by an invariant ellipse. In the papers [17,18]
appear this coexistence in systems of arbitrary degree, as wewill describe in the comments. In this way, the present paper is
strongly influenced by the methods and ideas from [19–21]. Following [22], we apply the averaging theory in order to study
the maximum number of limit cycles which can bifurcate from the linear center, perturbed in a special class of systems.
Specifically, we consider the system

ẋ = −y

ẏ = x + (x2 + y2)

ℓ≥1

εℓ

qℓ(x, y) − Aℓ


, (1.2)

where Aℓ > 0 and the polynomial qℓ(x, y) has degree nℓ − 2 ≥ 1 with qℓ(0, 0) = 0.

Theorem 1.1. Assume that for ℓ = 1, 2, 3 the constants Aℓ > 0, the polynomials qℓ(x, y) have degree nℓ − 2 and qℓ(0, 0) = 0.
Suppose that nℓ ∈ {2kℓ, 2kℓ − 1} and kℓ ≥ 2. Then for |ε| ≠ 0, sufficiently small the maximum number of limit cycles
of (1.2) bifurcating from the periodic orbits of the linear center ẋ = −y, ẏ = x using the averaging theory
(a) of first order is k1 − 2;
(b) of second order ismax


k2 − 2; 2


n1−2

2


− 2


;

(c) of third order ismax

k3 − 2;


n2−2

2


− 1


.

Comments to the first theorem:
• Theorem 1.1 was motivated by the results of [18]. In this paper, E. Sáez and I. Szántó introduce the systems of the form

ẋ = −y

ẏ = x + ε(x2 + y2)


n1−2
i=1

(qixi + q̃iyi) − A1


,

(1.3)

where qi, q̃i ∈ R and A1 > 0. This class is obtained by using the canonical form of Kukles type systems with an invariant
ellipse [17].

• In [17], the authors present the mentioned canonical form and discuss the tangential 16th Hilbert problem [23] for those
polynomial systems, showing an upper bound for the number of bifurcated limit cycles depending on the degree of
the system. More precisely, they perturb a Hamiltonian system and obtain a family of Kukles type systems of degree
n ∈ {2k, 2k − 1} with k ≥ 3 whose number of limit cycles is bounded by k − 1, and one of the limit cycles is given by an
invariant ellipse.
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