
Myokit: A simple interface to cardiac cellular electrophysiology

Michael Clerx a, b, Pieter Collins a, Enno de Lange a, Paul G.A. Volders b, *

a Department of Data Science and Knowledge Engineering, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
b Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, PO Box 5800, 6202 AZ, Maastricht, The
Netherlands

a r t i c l e i n f o

Article history:
Received 18 September 2015
Received in revised form
7 November 2015
Accepted 16 December 2015
Available online 23 December 2015

Keywords:
Computational models
Cardiac action potential
Software tools
Ion channels
Simulation

a b s t r a c t

Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular
electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface,
single and multi-cell simulation engines and a library of advanced analysis tools accessible through a
Python interface. Models can be loaded from Myokit's native file format or imported from CellML. Model
export is provided to C, MATLAB, CellML, CUDA and OpenCL. Patch-clamp data can be imported and used
to estimate model parameters. In this paper, we review existing tools to simulate the cardiac cellular
action potential to find that current tools do not cater specifically to model development and that there is
a gap between easy-to-use but limited software and powerful tools that require strong programming
skills from their users. We then describe Myokit's capabilities, focusing on its model description lan-
guage, simulation engines and import/export facilities in detail. Using three examples, we show how
Myokit can be used for clinically relevant investigations, multi-model testing and parameter estimation
in Markov models, all with minimal programming effort from the user. This way, Myokit bridges a gap
between performance, versatility and user-friendliness.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models of the electrical processes in cardiac myo-
cytes have been successfully used to elucidate the mechanisms of
action potential (AP) formation, electrical propagation from cell to
cell, and abnormal impulse formation and conduction in the heart
(Noble et al., 2012). These models provide a vital bridge between
drug targets, for example ion channels or receptors, and the
dynamical factors leading to heart-rhythm disorders, such as
pathologically altered conduction or repolarization (Weiss et al.,
2015). The application of new and refined experimental methods
has led to an increased level of detail and specialization in AP
models, which may now include elements such as stretch-sensitive
channels (Niederer and Smith, 2007), ion-channel phosphorylation
(O'Hara et al., 2011) or signaling pathways (Heijman et al., 2011).
Conversely, the growing awareness of the need to integrate models
on different scales combined with the increased availability of
computing power has broadened the scope for application of AP

models considerably. As a result, AP models have more users and
more uses than ever before, but also a far greater mathematical
complexity and a greater reliance on the model builder's correct
interpretation of complex multi-modal experimental data. Collab-
oration between experts from a wide range of disciplines is vital to
further refine models and experiments and therefore the knowl-
edge we derive from them (Abriel et al., 2013).

Software tools can aid researchers using AP models in several
ways. Firstly, the definition of open and unambiguous formats for
model description allows models to be exchanged, inspected,
compared, improved and revised. Publishing a model in a widely
recognized format is an invitation for external feedback and can
assist widespread adoption and recognition of modeling results.
Comparison can be automated, allowing models to be tested
against previous results from model or experiment each time a
change is made. This way, models can be continuously refined
without the danger of losing past results.

Secondly, sharing software for simulation and analysis is a way
of sharing effort and expertise so that researchers may benefit
directly from each other's work. Of particular importance in this
respect, is the role of fiber and tissue simulations for the develop-
ment of single-cell models. Many of the properties that a single-cell
model should capture only emerge when cells are coupled, making

* Corresponding author.
E-mail addresses: michael.clerx@maastrichtuniversity.nl (M. Clerx), pieter.

collins@maastrichtuniversity.nl (P. Collins), enno.delange@maastrichtuniversity.nl
(E. de Lange), p.volders@maastrichtuniversity.nl (P.G.A. Volders).

Contents lists available at ScienceDirect

Progress in Biophysics and Molecular Biology

journal homepage: www.elsevier .com/locate/pbiomolbio

http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008
0079-6107/© 2015 Elsevier Ltd. All rights reserved.

Progress in Biophysics and Molecular Biology 120 (2016) 100e114

mailto:michael.clerx@maastrichtuniversity.nl
mailto:pieter.collins@maastrichtuniversity.nl
mailto:pieter.collins@maastrichtuniversity.nl
mailto:enno.delange@maastrichtuniversity.nl
mailto:p.volders@maastrichtuniversity.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pbiomolbio.2015.12.008&domain=pdf
www.sciencedirect.com/science/journal/00796107
http://www.elsevier.com/locate/pbiomolbio
http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008
http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008
http://dx.doi.org/10.1016/j.pbiomolbio.2015.12.008


such simulations a vital part of AP model development. However,
the programming effort required to set up these simulations may
deter some modelers from taking this route. By sharing software
tools such barriers are taken away.

Finally, if tools are not just efficient but also easy to use then the
time needed to set up experiments is decreased while the number
of people able to do so (or willing to learn) is increased. This can aid
collaboration by drawing more non-experts into computational
biology while giving experts time to step outside their disciplines.

So how far have these benefits been realized in current software
tools? In the next sections we review existing software with a focus
on the three goals of sharing models, sharing methods and user
friendliness. We discuss the usefulness of these tools for model
development and make two central observations: (1) Existing tools
cater to AP-model use, more than to model development. These
two goals have different, sometimes directly opposite needs. (2)
There is a wide gap between easy-to-use simulation software with
limited capabilities and powerful simulation tools that require
considerable effort and programming skill from the user. Finally, we
present Myokit, a tool for model development and analysis which
aims to fill this gap.

1.1. Tools for sharing models

The most widely used language for sharing models of the car-
diac AP is CellML (Hedley et al., 2001; Cuellar et al., 2003). While
there are other exchange formats such as SBML (Systems Biology
Markup Language, see Hucka et al. (2003)) in which AP models can
be formulated, CellML has broad support in the AP modeling
community and a freely accessible repository containing over 160
models of the cardiac AP (http://models.cellml.org). The first
specification (version 1.0) was finalized in 2001 and a second
(version 1.1) was given definitive status in 2002. An overview of
tools capable of working with CellML is available online (http://
www.cellml.org/tools). The goal behind CellML is to facilitate uni-
versal exchange and re-use of mathematical models, particularly
models of the electrophysiological and biochemical processes in-
side a cell.

A number of tools have been published to convert CellML to
other languages, allowing CellML models to be used with a variety
of tools. The CellML advanced programming interface (API) defines
a number of ways to interact with a model, including translating it
to other languages (Miller et al., 2010). An implementation of the
API is available on the CellML website and can be used to translate
CellML models to C, MATLAB and Python. Another conversion tool
is AGOS (Barbosa et al., 2006), which can create simulation code for
Cþþ. It was modified by Amorim et al. (2010) to generate simula-
tion code that can be run on graphical processing units (GPUs),
thereby facilitating fast multi-cell simulations. PyCml (http://
chaste.cs.ox.ac.uk/cellml) is a Python based utility that can be
used to read and stringently validate CellML files before creating
Cþþ model definitions.

The CellML language is specified using XML (eXtensible Markup
Language), a widely used format for sharing documents over the
internet. The choice for XML makes it easy for developers of soft-
ware tools to incorporate a CellML import into their programs, as
software libraries to work with XML documents are freely available
for many different platforms. A downside of XML is that, while it is
human-readable as well as machine-readable, it is not necessarily
compact, nor easy to read or to write by hand. CellML equations in
particular are specified in a subset of MathML (Mathematical
Markup Language), which is unambiguous but highly verbose. In

addition, good model definitions for archiving and exchange are
written out with consistent units, are well annotated with infor-
mation about all the variables and define a rigid interface through
which the model can interact with other models. These features,
which are undoubtedly good for exchange formats, can be a hin-
drance to users wishing to rapidly experiment with different model
formulations, making CellML less suited to model development.

1.1.1. Combining models
A major benefit of having models publicly available in a shared

format is that models can be combined. For example, a model of the
cardiomyocyte can be incorporated into an integrative model of the
cardiovascular system. This is one of the key ideas behind the IUPS
Human Physiome project, which seeks to connect the many
specialized mathematical models used in biology
(Bassingthwaighte, 2000; Hunter, 2004). The need for such model
integration has driven the development of many of the tools dis-
cussed here.

A tool for combining models on the molecular level is Virtual
Cell, also known as VCell (Moraru et al., 2008). It can model elec-
trophysiology, reaction kinetics, membrane transport and diffusion
processes to create a 3D model of a cell that can be related to
experimentally obtained images. On a larger scale, tools such as
CHeart (http://cheart.co.uk), Continuity (http://continuity.ucsd.
edu) and OpenCMISS (Nickerson et al., 2014) can be used to
create combined models of electrophysiology, mechanics and fluid
dynamics inside the heart.

A key idea in creating these combined, multi-scale models is
that the resulting system is modular, i.e., that any model of a sub-
system (for example a model of the cardiac cellular AP) can be
replaced or updated without requiring changes to the other sub-
system models. This requires that the models, at least in part,
adhere to some well-defined structure about which there is a
widespread consensus. Such fixed structures (called ontologies in
software terms) contrast sharply with the creative aspects of model
development where variables, for example currents, are continu-
ously added, removed, split up and redefined. As a result, the aim of
integrating different levels of physiology is not always compatible
with the aim of accurately incorporating new experimental data.

1.1.2. Comparing model results
AP models represent theories on the electrophysiological func-

tioning of the cell. As such, it should always be possible to compare
model results with experimental data or predictions from
competing models. A standard defining the Minimum Information
for a Cardiac Electrophysiology Experiment (MICEE) has been
approved by a large consortium of cardiac electrophysiologists
(Quinn et al., 2011). Similarly, a standard defining the Minimum
Information About a Simulation Experiment (MIASE) has been
created by Waltemath et al. (2011). SED-ML, the Simulation
Experiment Description Markup Language, is a format for sharing
simulation experiments designed to meet the requirements set out
in MIASE. It describes how a simulation should be designed and run
in a manner that allows the results to be replicated on different
systems. At the time of writing this manuscript, the standard does
not yet meet the requirements needed to compare the output of
different models or to compare the output of arbitrary models to
experimental data. Functional curation is a standard proposed by
Cooper et al. (2011, 2015b) to describe experiments and post-
processing operations independently of a model. Such a standard
can be of great use for systematic model development. For example,
by creating a series of tests that a model must pass and regularly

M. Clerx et al. / Progress in Biophysics and Molecular Biology 120 (2016) 100e114 101

http://models.cellml.org
http://www.cellml.org/tools
http://www.cellml.org/tools
http://chaste.cs.ox.ac.uk/cellml
http://chaste.cs.ox.ac.uk/cellml
http://cheart.co.uk
http://continuity.ucsd.edu
http://continuity.ucsd.edu


Download English Version:

https://daneshyari.com/en/article/8400894

Download Persian Version:

https://daneshyari.com/article/8400894

Daneshyari.com

https://daneshyari.com/en/article/8400894
https://daneshyari.com/article/8400894
https://daneshyari.com

