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a b s t r a c t

Screening methods seek to sample a vast chemical space in order to identify starting points for further
chemical optimisation. Fragment based drug discovery exploits the superior sampling of chemical space
that can be achieved when the molecular weight is restricted. Here we show that commercially available
fragment space is still relatively poorly sampled and argue for highly sensitive screening methods to
allow the detection of smaller fragments. We analyse the properties of our fragment library versus the
properties of X-ray hits derived from the library. We particularly consider properties related to the de-
gree of planarity of the fragments.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Chemical space, taken here tomean the set of organic molecules
of suitable size and composition to potentially be oral drugs, is vast.
Lipinski et al. have performed an analysis of oral drugs and because
90% were shown to be less than 500 Da, they suggest 500 Da is a
useful cut off for the maximal size of a drug-like molecule (Lipinski
et al., 1997). This consideration has led to one frequently cited es-
timate of the size of drug-chemical space that suggests it could
consist of well over 1060 compounds (Bohacek et al., 1996). As
others have also observed (Hann and Oprea, 2004), this number is
so incomprehensibly large that it bears illustration. Assuming an
average molecular mass of between 400 and 500 Da, a sample
containing just one molecule of each possible compound would
have around 1011 times themass of the entire planet. Synthesising a
typical 10 mg amount of each would require more matter than is
believed to exist in the observable universe.

The subset of chemical space that has been synthesised can be
estimated from a snapshot of online chemical databases. As of May
2013, PubChem contains 47 million compounds (PubChem,
pubchem.ncbi.nlm.nih.gov), ChemSpider over 28 million com-
pounds (ChemSpider, www.chemspider.com), ZINC contains 21
million compounds (ZINC, zinc.docking.org), ACD contains 7
million compounds (Available Chemicals Directory, http://accelrys.
com/products/databases/sourcing/available-chemicals-directory.
html), eMolecules 5.9 million (eMolecules, www.emolecules.com)
and ChEMBL 1.3 million compounds (Gaulton et al., 2012). It has
been estimated that the total number of chemicals that have been

synthesised is somewhere in the region of 108 compounds (Renner
et al., 2011).

Computational enumeration of the whole of chemical space is a
task well beyond current technological capabilities, but if we
restrict both the size of molecules and the kinds of chemistry
involved, small subsets can be fully explored. This approach leads to
more conservative estimates of the size of chemical space, and has
been most impressively illustrated by the group of Reymond, with
their GDB databases (Blum and Reymond, 2009; Ruddigkeit et al.,
2012). The largest of these (GDB-17) contains 166 billion mole-
cules and includes molecules with up to 17 heavy atoms (i.e., non-
hydrogen atoms). Analysis of the smaller GDB-13 database suggests
that the number of potential molecules increases 8-fold with the
addition of each heavy atom, which if extrapolated leads to around
1030molecules at 36 heavy atoms (approximately 500 Da). It should
be noted however, that the chemical rules employed in these
enumerations are fairly restrictive, and fail to generate many mol-
ecules present in public databases.

An in silico exploration of 1030 compounds also looks like an
insurmountable challenge for the foreseeable future; storing such a
compound set would require of the order of 1023 gigabytes using
the relatively compact InChI format (Heller et al., 2013). By com-
parison, based on a recent study, a reasonable estimate of the
world's data storage capacity might be of the order of 1012 or 1013

gigabytes (Hilbert and L�opez, 2011). Possibly a larger problem
would be generating the structures e if we allow ourselves a
generous 108 s (approximately 3 years) for this exercise, wewill still
need to generate 1022 structures per second.

Rather than trying to exhaustively enumerate chemical space,
some researchers have tried to describe it in various ways (Bemis
and Murcko, 1996; Oprea and Gottfries, 2001; Pollock et al., 2008;* Corresponding author. Tel.: þ44 1223 226228.
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Reymond and Awale, 2012; Schuffenhauer et al., 2006; Schwartz
et al., 2013; Virshup et al., 2013). These descriptive approaches
can help to visualise, partition and categorise chemical space but
will not be considered any further in this article.

2. Fragments as probes of chemical space

A commonly stated advantage of fragment-based screening is
that a given number of fragment-sized molecules can sample
chemical space much more efficiently than the same number of
larger molecules. But what do we actually mean when we talk
about sampling chemical space? Most obviously, we can consider
what fraction of the available chemical space we have represented
in a screening collection/library. If we limit the screening library to
compounds of MW < 500, then as discussed above the total
chemical space is at least 1030 compounds, meaning that even the
largest multimillion compound screening library represents only
an infinitesimal fraction of what is possible. However, if we are
much more restrictive and limit ourselves to smaller molecules, we
can start to populate more meaningful fractions of the virtual set.
For example, in GDB-13 there are around 100 million compounds
with a heavy atom count of 12, meaning that a selection of just
1000 compounds represents 0.001% of the whole of that subset of
chemical space. This is 19 orders of magnitude better than the
fractional coverage achieved by our much larger library of drug-
sized compounds.

An alternative but perhaps more relevant interpretation (from a
drug discovery perspective) would be to recast the concept of
covering chemical space as a question: How many molecules do I
need in my library to ensure a sufficient number of hits against an
arbitrary target? This question was analysed theoretically in 2001,
in a seminal paper by Hann and co-workers (Hann et al., 2001). In
this article, they constructed a simple model of protein-ligand
binding, whereby both protein and ligand consist simply of one-
dimensional strings of binary features. These features might
represent shape, hydrophobic, or electrostatic properties of the
underlying molecules, or indeed any aspect of them that needs to
match in order for binding to occur. In the model, any mismatch
between a ligand feature and protein feature will prevent binding,
so a successful binding event requires matching all of the ligand
features with complementary features in the protein. Hann and co-
workers constructed libraries of model ligands with varying
numbers of these features, and virtually screened them against sets
of model receptors. They found that the hit rates of these libraries
decreased as the number of ligand features increased; more com-
plex molecules are less likely to bind to any given target. Hann and
co-workers also recognised that smaller ligands have fewer fea-
tures so, in general, will bind less tightly and the observed hit rate
will depend on the sensitivity of the method used to detect the hits.
Due to these two competing effects, the probability of detecting a
binding event for a random ligand of a specific size is predicted to
be: (i) low for very small ligands (due to the limits of sensitivity);
(ii) highest for small ligands (reflecting the balance between the
two competing effects); (iii) monotonically decreasing for larger
ligands (due to the increasing probability of a mismatch).

More recently, Leach and Hann revisited this analysis (Leach and
Hann, 2011), and discussed several attempts to validate it using real
experimental data. The results were in general equivocal, but there
were a number of complications in interpreting the data. Firstly, in
the absence of a universally recognised and well-behaved
descriptor of molecular complexity, many studies focussed on
size, either in the form of molecular weight or heavy atom count.
While in the original model system, size correlates perfectly with
complexity, for real molecules this will not be the case. Highly
functionalised molecules with ornate three dimensional shapes are

clearly more complex than equivalently sized molecules that are
planar and less decorated. Moreover, there is the confounding
factor of lipophilicity, which tends to correlate with size, at least in
collections of molecules associated with drug discovery. Lip-
ophilicity tends to correlate positively with promiscuity, which
might mask the expected opposite correlation with complexity. In
addition, most of the studies examined looked at promiscuity of
compounds, defined using a certain potency threshold; the choice
of this threshold (which varied between studies) will obviously
have a potentially large impact on the conclusions drawn.

Another group performed an experimental analysis that did
match the predictions of the Hannmodel (Teotico et al., 2009). They
performed a virtual fragment screen for inhibitors of b-lactamase
using a docking methodology, and obtained 23 hits from 48 com-
pounds tested. This compared very favourably with hit rates from
previous HTS and virtual screening campaigns. Many of the 23
fragment hits represented chemotypes not seen before as inhibitors
of this enzyme, so the researchers looked to see if these chemo-
types were present in commercial databases of lead-like com-
pounds (defined here as molecules with a heavy atom count
(HAC) � 25). Although they found 675 compounds matching the
fragment chemotypes, most of these were analogues of only 2 of
the fragment hits. In addition, using GDB-11 (Fink and Reymond,
2007) to provide side chain groups, they estimated the number of
possible lead-like molecules containing the 23 fragment hits to be
around 1011. By contrast, considering fragment-sized molecules
(HAC � 17), they found 93 commercial compounds out of a theo-
retical 104. The authors hypothesised that this improved coverage
of the available chemical space at lower heavy atom counts was a
large factor in their improved hit rate.

3. Coverage of fragment space by commercial vendors

Any analysis of fragment space is frustrated by (a) the inability
to enumerate chemical space for all but the smallest fragments; and
(b) the inability to prevent the generation of enormous numbers of
unsuitable compounds. Here we address the first problem by
considering a well-defined subspace of chemical space that can be
easily enumerated, and we discuss the second problem at the end
of this section. Our chemical subspace is composed of simple
fragment topologies based onmono-substituted and di-substituted
six membered rings. Rings of this type represent the more common
rings observed in drug molecules. The rings are substituted by one
or two side chains with each side chain containing up to 6 atoms. A
graph theoretical method was used to exhaustively generate all
possible side chains as described below. Databases of commercial
compounds were then compared to the enumerated library, to
ascertain which of these topologies was present.

Here we describe the construction of the side chain library that
was subsequently attached to the six membered ring. All connected
graphs of two to seven nodes were exhaustively generated using
the program GENG (McKay, 1981). These were filtered to remove
any graph containing more than one cycle. The resulting graphs
were represented as smiles strings by converting each node to
an sp3 carbon and each edge to a single bond. From the resulting set
of 70 graphs, a side chain library was generated by systematically
replacing each singly connected atom with an attachment point
that could subsequently be referenced in a virtual “SMIRKS reac-
tion” that attaches the side chain to a core scaffold. Any graph that
did not contain a singly connected atom (e.g. the graph that would
match cycloheptane) was discarded. After removal of duplicates
this procedure led to the creation of 96 graphs, each of which
contained the attachment point and up to 6 atoms that would form
part of the product of the SMIRKS reaction. These are shown in
Fig. 1.
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