
Nonlinear Analysis 88 (2013) 1–15

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Local well-posedness and stability of solitary waves for the
two-component Dullin–Gottwald–Holm system
Xingxing Liu a,b,∗, Zhaoyang Yin b,c

a Department of Mathematics, China University of Mining and Technology, 221116 Xuzhou, China
b Department of Mathematics, Sun Yat-sen University, 510275 Guangzhou, China
c Faculty of Information Technology, Macau University of Science and Technology, Macau, China

a r t i c l e i n f o

Article history:
Received 23 March 2013
Accepted 13 April 2013
Communicated by Enzo Mitidieri

MSC:
35G25
35L05

Keywords:
Two-component Dullin–Gottwald–Holm
system

Besov spaces
Local well-posedness
Solitary waves
Orbital stability

a b s t r a c t

In this paper,we study the Cauchyproblem for the two-componentDullin–Gottwald–Holm
system with the initial data (u0, ρ0) ∈ Bs

p,r (R) × Bs−1
p,r (R), 1 ≤ p, r ≤ +∞, and s >

max{1+
1
p ,

3
2 , 2−

1
p },which generalizes some previous local well-posed results in Sobolev

spaces. Thenwe prove that all the smooth solitarywave solutions are orbitally stable under
small disturbances.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Dullin et al. [1] presented the following Dullin–Gottwald–Holm (DGH) equation:

ut + c0ux + 3uux − α2(utxx + uuxxx + 2uxuxx)+ γ uxxx = 0, (1.1)

with x ∈ R, t ≥ 0, where α2 and γ

c0
are squares of length scales, and c0 =

√
gh (where c0 = 2ω) is the dispersion relation for

irrotational water waves propagating at the free surface of a layer of water of average depth h, over a flat bed [2,3]. Eq. (1.1)
was derived by asymptotic expansions directly in the Hamiltonian for Euler’s equation in the shallowwater regime [1]. It has
a bi-Hamiltonian structure and a Lax pair formulation [4,1]. It is also completely integrable and its traveling wave solutions
contain both the solitons for the KdV equation and the peakons for the Camassa–Holm (CH) equation [4] as limiting cases.
For the peakon solution, we know that it replicates a feature that is characteristic for the waves of great height-waves of
largest amplitude that are exact solutions of the governing equations for water waves [5–8].

Indeed, Eq. (1.1) has been studied in a lot of papers. Here we give a brief review. Tian et al. [9] studied the local well-
posedness and the scattering problem of the DGH equation. Yin [10] obtained the global strong solutions and solutions
which blow up in finite time. In [11], Zhang et al. proved the existence of global weak solutions to Eq. (1.1) provided that
the initial data satisfies some certain conditions. Using the bifurcation method, Guo et al. [12] obtained some expression of
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peakons of Eq. (1.1). When the dispersive parameter γ = −2α2ω, Eq. (1.1) has peaked solitary waves given by the formula

ϕ(x, t) = (c−2ω)e
−|x−ct|

|α| . In this situation, the orbital stability of one single solitary wave has been proved by Hakkaev [13].
As an extending result, Liu et al. [14] obtained the local well-posedness by Kato’s semigroup theory and proved the stability
of peakons for a generalized DGH equation. Inspired by [15], Liu et al. [16] established the orbital stability of the train of N
solitary waves for the DGH equation. Moreover, Zhang [17] gave some general expression of peakons and Ouyang et al. [18]
proved the orbital stability of the general peakons for Eq. (1.1) by the observation of relationship between the CH equation
and the DGH equation.

Motivated by the interest in the study of Eq. (1.1), Zhu et al. [19] derived a generalization of the DGH equation fromEuler’s
equationwith constant vorticity in shallowwaterwavesmoving over a linear shear flow, by using themethod shown in [20].
For the important role of the vorticity in the study of water wave theory, we refer the readers to [20,21] for more details.
We here consider the following two-component Dullin–Gottwald–Holm (2-DGH) system:

ut − utxx − Aux + 3uux + γ uxxx = 2uxuxx + uuxxx − ρρx, t > 0, x ∈ R,
ρt + (ρu)x = 0, t > 0, x ∈ R,
u(0, x) = u0(x), x ∈ R,
ρ(0, x) = ρ0(x), x ∈ R,

(1.2)

where u(t, x) represents the horizontal velocity of the fluid, ρ(t, x) is related to the free surface elevation from equilibrium
(or scalar density), and the parameter A, γ ∈ R are constant. From the derivation of System (1.2), the boundary assumptions
u → 0, ρ → 1 as |x| → ∞ are required [19,22,23]. Similar to the DGH equation, System (1.2) is also completely integrable
and it can be written as a compatibility condition of two linear systems (Lax pair) with a spectral parameter ζ [19,22]:

Ψxx =


−ζ 2ρ2

+ ζ


m −

A
2

+
γ

2


+

1
4


Ψ , Ψt =


1
2ζ

− u + γ


Ψx +

1
2
uxΨ ,

wherem = u − uxx.
Recently, Zhu et al. [19] have studied the well-posedness of the periodic 2-DGH system on the unit circle S , R/Z

by Kato’s semigroup theory with the initial data (u0, ρ0) ∈ Hs(S) × Hs−1(S), s ≥ 2, and have derived the precise blow-
up mechanism and the wave-breaking result for System (1.2). In [22], Guo et al. deal with System (1.2) on the line R in
the aspects of the well-posedness, wave-breaking criteria and global strong solutions. It is noted that using the bi-linear
estimate technique to the approximate solutions, Chen et al. [24] establish the local well-posedness result for System (1.2)
with the initial data (u0, ρ0) ∈ Hs(R)× Hs−1(R), s > 3

2 , which improves the well-posed result shown in [22].
Inspired by [25,26], the goal of the present paper is to address the Cauchy problem of System (1.2) with the initial data

(u0, ρ0) ∈ Bs
p,r(R) × Bs−1

p,r (R), 1 ≤ p, r ≤ +∞, and s > max

1 +

1
p ,

3
2 , 2 −

1
p


. Since the nonhomogeneous Besov spaces

contain Sobolev spaces, i.e., Bs
2,2(R) = Hs(R), thus the results of [22,24] come up as a special case of our results. In particular,

we handle the critical index cases s = 2 +
1
p , 3 +

1
p , when using the useful transport equation theory, by the interpolation

method. Moreover, we will explain that the index s =
3
2 is critical in dealing with the well-posedness of System (1.2) with

initial data in Besov spaces B
3
2
2,r×B

1
2
2,r in some sense (see Remark 3.2). Another purpose of the paper is to prove that all smooth

solitary wave solutions are orbitally stable in the energy spaces H1(R)× L2(R). Although we know that an excellent proof
of stability of peakons for the CH equation is given by Constantin and Strauss [27] using the conservation laws, however,
for this coupled two-component system (1.2), we find it is difficult to use that method here. Fortunately, we find that the
problem can be solved by the general approach to the orbital stability of a Hamiltonian system introduced by Grillakis et al.
in [28].

The remainder of paper is organized as follows. In Section 2, we present some facts on Besov spaces, some preliminary
properties and the transport equation theory. In Section 3, we establish the local well-posedness result of System (1.2) in
Besov spaces. In Section 4, we are devoted to the orbital stability of the solitary wave solutions of System (1.2).
Notation. In the following,wedenoteC > 0 as a generic constant only depending on p, r, s. Since our discussion about System
(1.2) is on the line R, for simplicity, we omit R in our notations of function spaces. And we denote the Fourier transform of
a function u as F u. All the transpose of a vector f⃗ or a sequence of vectors {f⃗n}n∈N is presented as f⃗ t or {(f⃗n)t}n∈N.

2. Preliminaries

In this section, wewill recall some basic theory of the Littlewood–Paley decomposition and the transport equation theory
on Besov spaces, which will play an important role in the sequel. One may get more details from [29,30].

Proposition 2.1 (Littlewood–Paley Decomposition [29]). Let B ,

ξ ∈ R, |ξ | ≤

4
3


and C ,


ξ ∈ R, 3

4 ≤ |ξ | ≤
8
3


. Then

there exist χ(ξ) ∈ C∞
c (B) and η(ξ) ∈ C∞

c (C) such that

χ(ξ)+


q∈N

η(2−qξ) = 1, ∀ ξ ∈ R
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