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a b s t r a c t

Site-specific management strategies in wheat fields can be strongly enhanced with sensor technology
that detects spatial changes of wheat biomass. The objectives of this study were to propose a multi-
sensor approach combining a digital camera system that measures plant coverage with an arbitrary crop
height measuring instrument for estimating wheat biomass. Digital images, fresh and dry biomass, and
crop height measurements were taken at 180 sample points distributed over 4 fields between the
BBCH growth stages 30–75. Plant coverage percentage was calculated by separating plant pixels from
background pixels of NDVI and NIR images using image segmentation based on partitioning clustering.
Performance of three clustering algorithms (k-means, partition around mediods (PAM), and fuzzy
c-means) was analyzed. Plant coverage from image clustering was further related to fresh and dry bio-
mass with and without crop height measurements using simple and multiple regression models. The per-
formance of the three clustering algorithms was similar for estimating wheat biomass. NDVI image
segmentation was highly obstructed by scattering effects especially at later BBCH stages through the
presence of wheat ears, stems, and tilted leaves, whereas NIR image segmentation was generally good
except with images that were taken at locations with very low plant coverage and dry soil crusts.
Consequently, NIR image clustering yielded more accurate estimates of fresh and dry biomass
(R2 = 0.79/0.68) than NDVI image clustering (R2 = 0.66/0.56) among the individual measurement runs
on average. Still cloud conditions had some influence on NIR clustering. By pooling the complete set of
sampling points from all measurement runs into a global model, the combination of image clustering
with crop height was helpful. For fresh biomass, global model quality changed from R2 = 0.15 or
R2 = 0.46 without crop height to R2 = 0.63 or R2 = 0.82 with crop height for NDVI or NIR, respectively.
For dry biomass, crop height was itself a strong predictor with R2 = 0.86, whereas the model improvement
by including image clustering of plant coverage was nearly negligible. In conclusion, the combination of a
camera sensor using image clustering with a sensor able to measure crop height such as LIDAR or ultra-
sound systems seems to be a promising way to reach for more accurate and robust estimations of wheat
biomass especially when measurements over multiple fields and dates are considered without the need
of re-calibration.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

The high spatial variability within fields has been widely stated
for soil and plant agronomical parameters (Dammer, 2005;
Schirrmann and Domsch, 2011). This is especially true for the
growth of wheat plants because it is influenced by a complex inter-
relation of many factors comprising amongst others soil hetero-
geneity, dispersal of weeds, plant diseases, relief position, or

management (Lemaire and Gastal, 1997). Thus, spatial patterns
of wheat biomass are highly heterogeneous and highly temporally
unstable. Sensor technology may detect changes of wheat biomass
online in order to adapt site-specific management strategies and
once implemented it might help to improve nitrogen management,
fungicide application, crop yield estimation, and crop monitoring
(Oerke et al., 2010). In case of precision fungicide application,
one would be interested in estimating the right amount of spray
liquid according to the biomass and crop surface (leaves and
stems) of wheat plants (Dammer and Ehlert, 2006). Currently, no
commercial sensor exists that allows automatic disease detection
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before the pathogen reaches critical thresholds. However, since
crop surface and fresh biomass correlate strongly with each other,
the sensor detection of one of these two agronomical parameters is
often sufficient for variable rate application of fungicides.

Optical sensors operating in the visual (Vis, 400–700 nm) and
near-infrared (NIR, 700–1300 nm) wavelengths of the electromag-
netic spectrum are frequently used in determining field hetero-
geneity for precision agricultural applications (Dammer and
Ehlert, 2006; Schirrmann et al., 2013). Both active and passive sen-
sors are used in order to estimate many agronomical parameters of
wheat plants often with the focus on nitrogen management (Erdle
et al., 2011; Schirrmann et al., 2015). Passive sensors measure
directly a signal prompting from the wheat plants using mostly
the sunlight reflected from the plant leaf surfaces (Erdle et al.,
2011). Many remote sensing-, unmanned aired vehicle- and
camera-based ground systems work this way (Bendig et al.,
2014; Dammer, 2005; Lopresti et al., 2015). In contrast, active sen-
sors use an artificial signal directed to the wheat plants and its
response is measured after it is scattered back from the plant sur-
faces. Several types of signal sources have been tried such as light
emitting diodes, LED (Dammer and Wartenberg, 2007), laser
(Ehlert and Heisig, 2013), or ultrasonic devices (Anthony et al.,
2014). The advantage over passive sensors is that active sensors
become to a certain degree independent of environmental influ-
ences such as ambient light during the measurement (Kipp et al.,
2014). Examples of commercially active sensors include the Yara
N-Sensor� (Yara, Dülmen, Germany), GreenSeeker� (Trimble,
Sunnyvale, CA., USA), OptRx (Ag Leader Technology, Io., USA),
CropCircle� (Holland Scientific Inc., Lincoln, NE, USA), detectspray�

(Blackshaw et al., 1998) based on the weedSeeker�, and Weed-IT�

(Rometron, Doorwert, NL) based on fluorescence. However, each of
these sensors delivers an integrated signal over the entire
measuring area that means a mixture of plants and soil. In contrast,
measurements of plant biomass with camera sensors are able to
differentiate the measuring area pixelwise.

Often, the normalized difference vegetation index (NDVI) is
derived from optical sensors and related to several agronomic
parameters including wheat biomass. The NDVI is calculated as
the normalized transformed ratio between the reflectance mea-
sured at the red wavelength range (RED, 620–700 nm) and NIR
wavelength range (Rouse et al., 1974).

NDVI ¼ ðNIR � REDÞ
ðNIR þ REDÞ ð1Þ

The NDVI uses the advantage that back-scattering from plant
components is very low in the RED whereas very high in the NIR.
The low back-scattering in the RED occurs due to chlorophyll activ-
ity of photosynthesis. In contrast, the high NIR reflectance is
strongly determined by the scattering of light in the spongy meso-
phyll of the plants at water saturated cell walls, in air-cell inter-
faces between cell components, or other cells and can therefore
be well related to the plant biomass (Campbell, 2002). As a result,
there is a high difference between RED and NIR reflectance from
the crop canopy. On the contrary, soil reflectance, has only a small
difference between RED and NIR wavelengths. This makes it easy
to distinguish between plant and soil using the NDVI (Lukina
et al., 1999). Because of these properties, the NDVI was related to
numerous agronomical parameters of wheat such as leaf area
index (LAI), biomass, or used in crop models.

A key role for estimating wheat biomass from digital images is
the correct separation of wheat plants from the background, usu-
ally the soil, by means of image segmentation. The image segmen-
tation is the process of partitioning an image into a set of disjoint
segments so that image pixels of a specific segment share certain
characteristics with each other based on the texture, color, or

intensity (Kandwal et al., 2014). The aims of image segmentation
are to simplify the image, exclude the background or to clarify cer-
tain features in the image. Many different types of segmentation
methods are used in image processing such as thresholding, clus-
tering, histogram based methods, or neural networks (Kandwal
et al., 2014; Moshou et al., 2001). Most studies that estimate agro-
nomical parameters of wheat from digital images are based on
thresholding. These approaches use empirically presumed thresh-
old values that split image gray-scaled values to differentiate back-
ground and plant pixels (Jones et al., 2004; Lukina et al., 1999;
Tavakoli et al., 2014). Guo et al. (2013) used a machine learning
approach with regression trees in order to segment vegetation in
wheat images. So far, partitioning clustering has not been adopted
for wheat image segmentation, although it has been used
successfully in many other research fields like medical imaging
or document imaging (Feng and Chen, 2004).

In this study, the general research question was to propose a
multi-sensor approach for in-field estimation of wheat biomass
in the field. By doing so, we tested a camera based solution using
images from the RED and NIR wavelength range and calculated
the wheat plant coverage over its field of view (FOV) by means
of image clustering. The plant coverage was further combined with
crop height measurements to find a solution for a future camera
sensor fusion with a height measurement instrument based on
LIDAR or ultrasonic to measure wheat biomass online. We investi-
gated the following research questions:

– Can we estimate wheat biomass from NDVI or NIR image
clustering?

– Do we need calibration before using the camera sensor on a dif-
ferent field or date?

– Does the partitioning clustering algorithm influence model
results?

– Is modeling improved by integration of crop height in the model
for a future sensor fusion?

2. Material and methods

2.1. Data acquisition

The on-farm study was conducted in four fields in Eastern
Germany during the spring season in 2014 (51� 490, 12� 420). The
soils of these fields are characterized by young flood plain deposits
of the Elbe river influenced by groundwater. Especially, different
proportions of soil texture fractions led to variations in plant
growth. Winter wheat with different varieties was grown from
field A to D (Table 1): Asano, Glaucus, Kerobino, and Potential. In
each field, three measurement runs on different dates were con-
ducted between the BBCH growth stages 30 and 75 (Lancashire
et al., 1991). For each measurement run, 15 locations in a transect
were chosen with respect to the wheat variability visually
observed at that date and field (Fig. 1). Since biomass sampling
was destructive, reference points for the next measurement run

Table 1
Field characteristics.

Field Size
(ha)

Wheat
variety

Dominant soil
type

Soil texture range

A 13.7 Asano Fluvic
Cambisol

Sandy loam – loamy sand

B 28.2 Glaucus Fluvic
Cambisol

Silt loam – sandy clay loam

C 64.9 Kerobino Fluvic
Cambisol

Silt loam – clay loam (partly
loamy sand)

D 15.5 Potential Fluvic
Cambisol

Silt loam – clay loam
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