

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

Self-adjoint operators on real Banach spaces

Paweł Wóicik

Institute of Mathematics, Pedagogical University of Cracow, Podchorażych 2, 30-084 Kraków, Poland

ARTICLE INFO

Article history: Received 20 September 2012 Accepted 30 December 2012 Communicated by Enzo Mitidieri

MSC: 39R52 46C50

47A05 46C15

Keywords: Norm derivatives Self-adjoint operator Functional equation

Characterization of inner product spaces

ABSTRACT

The aim of this paper is to discuss a functional equation

$$\rho'_{+}(f(x), y) = \rho'_{+}(x, f(y))$$

for all $x, y \in X$. We show that, if a mapping $f: X \to X$ satisfies this functional equation, then f must be a linear continuous operator and we solve this equation in the case when X = C(M). Moreover, we give a new characterization of inner product spaces.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let $(X, \|\cdot\|)$ be a real normed space. We define two mappings $\rho'_+, \rho'_-: X \times X \to \mathbb{R}$:

$$\rho'_{\pm}(x,y) := \lim_{t \to 0^{\pm}} \frac{\|x + ty\|^2 - \|x\|^2}{2t} = \|x\| \cdot \lim_{t \to 0^{\pm}} \frac{\|x + ty\| - \|x\|}{t}.$$

These mappings are called *norm derivatives*. Now, we recall their useful properties (proofs can be found in [1,2]):

- $\begin{array}{l} \text{(nd1)} \ \forall_{\mathbf{x},\mathbf{y} \in \mathbf{X}} \ \forall_{\alpha \in \mathbb{R}} \ \rho_{\pm}'(\mathbf{x},\alpha\mathbf{x}+\mathbf{y}) = \alpha \|\mathbf{x}\|^2 + \rho_{\pm}'(\mathbf{x},\mathbf{y}); \\ \text{(nd2)} \ \forall_{\mathbf{x},\mathbf{y} \in \mathbf{X}} \ \forall_{\alpha \geqslant 0} \ \rho_{\pm}'(\alpha\mathbf{x},\mathbf{y}) = \alpha \rho_{\pm}'(\mathbf{x},\mathbf{y}) = \rho_{\pm}'(\mathbf{x},\alpha\mathbf{y}); \\ \text{(nd3)} \ \forall_{\mathbf{x},\mathbf{y} \in \mathbf{X}} \ \forall_{\alpha < 0} \ \rho_{\pm}'(\alpha\mathbf{x},\mathbf{y}) = \alpha \rho_{\mp}'(\mathbf{x},\mathbf{y}) = \rho_{\pm}'(\mathbf{x},\alpha\mathbf{y}); \\ \end{array}$
- (nd4) $\forall_{x \in X} \rho'_{+}(x, x) = ||x||^{2}$;

- $\begin{array}{l} \text{(nd4)} \ \forall_{x_i \in X} \ \rho_\pm^+(x,x) \|x\| \ , \\ \text{(nd5)} \ \forall_{x_i,y \in X} \ |\rho_\pm'(x,y)| \leqslant \|x\| \cdot \|y\|; \\ \text{(nd6)} \ \forall_{x_i,y \in X} \ \rho_-'(x,y) \leqslant \rho_+'(x,y); \\ \text{(nd7)} \ \forall_{x_i,y,z \in X} \ \rho_+'(x,y+z) \leqslant \rho_+'(x,y) + \rho_+'(x,z); \\ \text{(nd8)} \ \forall_{x_i,y,z \in X} \ \rho_-'(x,y+z) \geqslant \rho_-'(x,y) + \rho_-'(x,z); \\ \end{array}$

Moreover, mappings ρ'_+ , ρ'_- are continuous with respect to the second variable, but not necessarily with respect to the first one. Note, that if $(X, \langle \cdot | \cdot \rangle)$ is an inner product space, then $\langle y | x \rangle = \rho'_+(x, y) = \rho'_-(x, y)$ for arbitrary $x, y \in X$.

In a real normed space, one can define various orthogonality relations. In the paper, we will consider the Birkhoff-James orthogonality:

$$x \perp_B y : \Leftrightarrow \forall_{\lambda \in \mathbb{R}} ||x|| \leq ||x + \lambda y||.$$

In a real normed space X we have for arbitrary $x, y \in X$ (see [2]):

$$\rho'_{-}(x,y) \leqslant 0 \leqslant \rho'_{+}(x,y) \Leftrightarrow x \perp_{B} y. \tag{1.1}$$

In a similar way as in the inner product space, we introduce ρ_+ -orthogonality and ρ_- -orthogonality (see [3,2]):

$$x \perp_{\rho_+} y : \Leftrightarrow \rho'_+(x, y) = 0, \qquad x \perp_{\rho_+} y : \Leftrightarrow \rho'_-(x, y) = 0.$$

In an inner product space we have $\bot = \bot_{\rho_+} = \bot_{\rho_+} = \bot_B$. In an arbitrary normed space we have $\bot_{\rho_+}, \bot_{\rho_+} \subset \bot_B$.

2. Open problem

Let $(H, \langle \cdot | \cdot \rangle)$ be a Hilbert space. It is easy to check that, if $f: H \to H$ satisfies

$$\forall_{x,y\in X} \quad \langle f(x)|y\rangle = \langle x|f(y)\rangle$$
,

then *f* is linear and continuous. In this paper, we will give a natural generalization of such a functional equation in the case of real normed spaces. The following problem was formulated in [1, p. 177].

Problem 2.1. Find all functions $f: X \to X$ such that

$$\rho'_{+}(f(x), y) = \rho'_{+}(x, f(y)),$$

for all x, y in X.

Further on, we will give a characterization of inner product spaces. Namely, we will answer the question posed in [1, p. 177].

Problem 2.2. If this functional equation holds for all linear transformations f whose matrices are symmetric, does $\|\cdot\|$ derive from an inner product?

3. Preliminaries

3.1. On some properties of the norm

A normed space $(X, \|\cdot\|)$ is said to be *smooth at the point* $x_o \in X \setminus \{0\}$, if there is a unique $x^* \in X^*$ such that $x^*(x_o) = \|x_o\|$ and $\|x^*\| = 1$. Now we will give a characterization of smoothness at a point in terms of the norm derivatives (see [2,1]).

Theorem 3.1. Let $(X, \|\cdot\|)$ be a real normed space and let $x_0 \in X \setminus \{0\}$. Then, the following statements are equivalent:

- (1) X is smooth at the point x_0 :
- (2) the norm is Gâteaux differentiable at x_0 ;
- (3) $\forall_{y \in X} \rho'_{-}(x_0, y) = \rho'_{+}(x_0, y);$
- (4) the functional $\rho'_{+}(x_{0}, \cdot)$ is linear;
- (5) the functional $\rho'_{-}(x_0, \cdot)$ is linear;
- (6) X is smooth at the point $-x_0$.

Now, we consider a set

$$D_{sm}(X) := \{x \in X : X \text{ is smooth at } x\} \cup \{0\}.$$

Throughout this paper, we will often assume that the set $D_{sm}(X)$ is dense. We will show that the separable Banach space has this property.

The following theorem of Mazur (see [4] or [5, p. 12]) will be useful for further considerations.

Theorem 3.2. Let $(X, \|\cdot\|)$ be a separable Banach space and $f: D \to \mathbb{R}$ be a continuous convex function on an open convex subset D of X. Then there exists a dense G_{δ} set $G \subset D$ such that f is Gâteaux differentiable on G.

Clearly the norm $\|\cdot\|: X \to \mathbb{R}$ is convex. Therefore, applying the Theorem of Mazur and Theorem 3.1, we get:

Theorem 3.3. Let $(X, \|\cdot\|)$ be a separable real Banach space. Then $D_{sm}(X)$ is dense.

In this paper, a set $E \subset X^*$ is called a total set, if

$$\forall_{x \in X \setminus \{0\}} \exists_{\varphi \in E} : \varphi(x) \neq 0,$$

or equivalently, if

$$\forall_{x \in X} \quad [(\forall_{\varphi \in E} \varphi(x) = 0) \Rightarrow x = 0].$$

Let us denote the set $\{\rho'_+(x,\cdot)\in X^*:x\in D_{sm}(X)\}$ by X^*_{sm} . The following lemma will be useful in the proof of the main result.

Download English Version:

https://daneshyari.com/en/article/840184

Download Persian Version:

https://daneshyari.com/article/840184

<u>Daneshyari.com</u>