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a b s t r a c t

We consider the Navier–Stokes equations in a half-plane with a drift term parallel to the
boundary and a small source term of compact support.We provide detailed information on
the behavior of the velocity and the vorticity at infinity in terms of an asymptotic expansion
at large distances from the boundary. The expansion is universal in the sense that it only
depends on the source term through some constants. The expansion also applies to the
problem of an exterior flow past a small body moving at constant velocity parallel to the
boundary, and can be used as an artificial boundary condition on the edges of truncated
domains for numerical simulations.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the steady Navier–Stokes equations in the half-plane Ω+ =

(x, y) ∈ R2

| y > 1

with a drift

term parallel to the boundary, a force of compact support, and zero Dirichlet boundary conditions at the boundary of the
half-plane and at infinity,

∂xu + u · ∇u + ∇p−∆u = F , (1)
∇ · u = 0, (2)

where F is smooth and of compact support inΩ+, i.e., F ∈ C∞
c (Ω+), subject to the boundary conditions

u(x, 1) = 0, x ∈ R, (3)
lim
x→∞

u(x) = 0. (4)

Our main result is an asymptotic expansion for the solution to this problem.
For small forces, existence of a solution for this system together with basic bounds on the decay at infinity was proved

in [1], and uniqueness of solutions was proved in [2] in a very general context. In [3] additional information on the decay at
infinity was obtained. In a similar three dimensional case (see [4]), the asymptote of the velocity field has been analyzed to
leading order. For a general introduction to the method used in this series of papers, see [5].

In [2] it was also shown that the asymptotic behavior of the unique solution to (1)–(4) is identical to the one for the
problem of an exterior flow without force past a small body B moving parallel to the wall at constant velocity described in
a frame comoving with the body. See Fig. 1 for a schematic of the two related problems. As a consequence, the asymptotic
expansion which we provide here also describes the asymptotic behavior of the solution for the problem with a body. This
asymptotic expression turns out to be particularly useful in order to provide artificial boundary conditions for numerical
simulations of the flow with a body; see [6]. For completeness, we note that artificial boundary conditions obtained this
way have also been applied with success in the numerical resolution of two and three-dimensional flows in the full space
(see [7–10]).
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Fig. 1. Left: the problemwith a small body moving at constant velocity parallel to a wall. Right: the related problemwithout a body, but with a force term
of compact support, studied in this paper.

Whereas the efforts in previous paperswere concentrated on proving various basic properties of the solution, the present
paper focuses on obtaining the above-mentioned explicit asymptotic expansion. In the remainder of this paper, when we
invoke ‘‘the solution’’, it will be understood that it has the properties proved in the previous papers referenced above (i.e.,
existence, uniqueness and decay properties).

Our main result is summarized in the following theorem.

Theorem 1. Let u = (u, v) and p be the solution to Eqs. (1)–(4) for F small and let ω be the vorticity. Then, there exist constants
c1, c2 such that for ε > 0,

lim
y→∞

sup
x∈R

|y5/2−ε(u(x, y)− uas(x, y))| = 0, (5)

lim
y→∞

sup
x∈R

|y5/2−ε(v(x, y)− vas(x, y))| = 0, (6)

lim
y→∞

sup
x∈R

|y9/2−ε(ω(x, y)− ωas(x, y))| = 0, (7)

with

uas(x, y) =
c1
y3/2

ϕ1(x/y)+
c1
y2
ϕ2,1(x/y)+

c2
y2
ϕ2,2(x/y)−

c1
y2
ηW (x/y2)−

c1
y3
ηB(x/y2), (8)

vas(x, y) =
c1
y3/2

ψ1(x/y)+
c1
y2
ψ2(x/y)+

c2
y2
ψ2,2(x/y)+

c1
y3
ωW (x/y2)+

c1
y4
ωB(x/y2), (9)

ωas(x, y) =
c1
y3
ωW (x/y2)+

c1
y4
ωB(x/y2), (10)

and functions ϕ1, ϕ2,1, ϕ2,2, ψ1, ψ2,1, ψ2,2, ηW , ηB, ωW and ωB as given in Appendix A.1.

Remark 2. This theorem is an immediate consequence of Theorem 10 in Section 3.
• The functions ϕ1, ϕ2,1, ϕ2,2, ψ1, ψ2,1, ψ2,2, ηW , ηB, ωW and ωB are universal, i.e., independent of F .
• The power 5/2 in the limits (5) and (6) is sharp, whereas the power 9/2 in (7) can probably be improved by 1/2 at the

price of additional computations.
• Some terms in (8) and (9) are unimportant in view of the limits (5) and (6), but they are included such as to form a

divergence-free velocity field in pairs of successive terms of uas and vas and such as to have two orders in both of the two
scalings x/y and x/y2.

• The explicit forms of uas and vas imply that

lim
y→∞

y3/2u(xy, y) = c1ϕ1(x),

lim
y→∞

y3/2v(xy, y) = c1ψ1(x),

which shows that the bounds given in [1] are sharp. Remark that this decay is faster than in the full plane (see [7]).
Moreover, the components of the velocity field associated to the functions ϕi and ψi are harmonic. The asymptotic
expansion is thus given by the superposition of a potential flow and a flow carrying the vorticity, which is concentrated,
to leading order, in a parabolic region called the ‘‘wake’’, in the sense that

lim
y→∞

y3ωas(xy2, y) = c1ωW (x).

In contrast to the case of an exterior problem in R2 (see for example [8] or [11, pp. 826–829]), the vorticity is however
not exponentially small outside the wake, since we have in particular, for all x ∈ R,

lim
y→∞

y4ωas(x, y) = c1ωB (0) ≠ 0,

which shows that a background of vorticity is created by the interaction of the fluid with the boundary.
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