Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Large deviation for the nonlocal Kuramoto-Sivashinsky SPDE

Lijun Bo^a, Yiming Jiang^{b,*}

^a Department of Mathematics, Xidian University, Xi'an 710071, PR China
^b School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, PR China

ARTICLE INFO

Article history: Received 24 August 2012 Accepted 8 January 2013 Communicated by Enzo Mitidieri

MSC: primary 60H15 secondary 60F10 35R60

Keywords: Large deviation principle Nonlocal Kuramoto–Sivashinsky equations Small noise perturbations Contraction principle

1. Introduction

It is known that the deterministic 1-dimensional Kuramoto-Sivashinsky (K-S) equation,

$$du(t) + (u_{xxxx} + u_{xx} + uu_x) dt = 0$$

arises in the modelling of the flow of a thin film of viscous liquid falling down an inclined plane, subject to an applied electric field. With an impact of a nonlocal term, Duan and Vincent [1] studied the dynamics concerning the deterministic nonlocal K–S equation. In a successive paper [2], the authors discussed a stochastic version of Eq. (1) with an additive white noise. They proved that a unique weak solution exists in $L^4(0, T; L^4(G))$, \mathbb{P} -a.s. for the equation with homogeneous Dirichlet boundary conditions. In [3], Yang discussed an analogous subject as in [1] for the equation driven by an additive white noise with the impact of the nonlocal term, which is described in the following form:

$$\begin{cases} du(t) + (u_{XXX}(t) + u_{X}(t) + u(t)u_{X}(t)) dt + \alpha \mathcal{H} \mathcal{I} (u_{XXX}(t)) dt = \sigma dW(t), & \text{in } G, \\ u \text{ is periodic on } G := (-\ell, \ell), & \text{i.e., } u(x + \ell) = u(x - \ell) \text{ for } x \in G, \end{cases}$$
(2)

where the constants $\ell > 0$, $\sigma > 0$, $\sigma \in \mathbb{R}$ and the nonlocal term $\mathcal{H}\mathfrak{l}(u)$ is the Hilbert transform given by

$$\mathcal{H}l(u)(x) := -\frac{1}{2\ell} \int_{-\ell}^{\ell} \cot \frac{\pi(x-y)}{2\ell} u(y) dy, \quad x \in G.$$
(3)

The noise term in (2) is an additive noise σdW , where $W = (W(t); 0 \le t \le 1)$ is a Q-Wiener process on a complete probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t; t \ge 0), \mathbb{P})$, where the filtration $(\mathcal{F}_t; t \ge 0)$ satisfies the usual conditions.

* Corresponding author. Tel.: +86 13752070817.

E-mail addresses: lijunbo@xidian.edu.cn (L. Bo), ymjiangnk@nankai.edu.cn (Y. Jiang).

ABSTRACT

In this paper, we establish a large deviation principle for the (weak) solution to a nonlocal Kuramoto–Sivashinsky stochastic partial differential equation with small noise perturbation. The key technique is an application of the contraction principle. © 2013 Elsevier Ltd. All rights reserved.

CrossMark

(1)

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2013 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2013.01.005

In this paper, we are concerned with a large deviation principle (LDP) for the (weak) solution $u^{\varepsilon} = (u^{\varepsilon}(t); 0 \le t \le 1)$ to Eq. (2) with small noise perturbations. Namely, for any $\varepsilon > 0$ and $t \in [0, 1]$, the (\mathcal{F}_t ; $t \ge 0$)-adapted process u^{ε} is governed by

$$\begin{cases} du^{\varepsilon}(t) + \left(u^{\varepsilon}_{XXX}(t) + u^{\varepsilon}_{XX}(t) + u^{\varepsilon}(t)u^{\varepsilon}_{X}(t)\right)dt + \alpha \mathcal{H} \mathcal{I}\left(u^{\varepsilon}_{XXX}(t)\right)dt = \varepsilon \sigma dW(t), & \text{in } G; \\ u^{\varepsilon} \text{ is periodic on } G. \end{cases}$$
(4)

The LDP for various stochastic partial differential equations (SPDEs) driven by white noise have been studied in the literature (see, e.g., [4–6] and references therein). In [4], Cardon-Weber obtained the LDP for the 1-dimensional stochastic Burgers type equation by proving the uniform Freidlin–Wentzell estimates. Further, Carreras and Sarrà studied the LDP for a *d*-dimensional stochastic heat equation with spatially correlated noise in [5]. Recently, Röckner et al. [6] established the LDP for stochastic generalized porous media equations using the generalized contraction principle (see Theorem 3.2 therein). Motivated by the idea employed in [6], we prove the LDP of the (weak) solution to Eq. (2) with small noise perturbations (namely, the solution to Eq. (4) for $\varepsilon > 0$) by adopting a version of the contraction principle (see Theorem 4.2.23 in [7]). Note that this technique has been applied to derive the corresponding LDP for diffusion processes or delay SDEs (see, e.g. [7,8]).

The rest of this paper is organized as follows. In Section 2, some preliminaries are given. Section 3 is devoted to establishing probability properties of the (weak) solution to Eq. (4). In Section 4, we explore the skeleton equation corresponding to Eq. (4). Finally a LDP of the (weak) solution to the nonlocal K–S SPDE with small noise perturbation is established in Section 5.

2. Preliminaries

This section would introduce some basic notation, function spaces and functional inequalities used frequently in the paper.

First, we recall a basic fact on the solution to Eq. (2) with the initial value u_0 when the diffusive coefficient $\sigma = 0$, namely, the spatial average \bar{u}_0 of u,

$$\bar{u}_0 := \frac{1}{2\ell} \int_{-\ell}^{\ell} u(t, x) dx = \frac{1}{2\ell} \int_{-\ell}^{\ell} u_0(x) dx, \quad \forall t \ge 0$$

W.L.G., suppose that $\bar{u}_0 = 0$ throughout the paper. Thus, we can define the following function spaces,

$$\begin{cases} H := \left\{ u \in L^2(G); \ u \text{ is periodic on } G, \ \int_{-\ell}^{\ell} u(x) dx = 0 \right\}, \\ H_{\text{per}}^p := \left\{ u \in W^{2,p}(G); \ u \text{ is periodic on } G \right\}, \quad \text{for } p \in \mathbb{N}, \\ \dot{H}_{\text{per}}^p := H_{\text{per}}^p \cap H, \quad \text{for } p \in \mathbb{N}. \end{cases}$$

For $i \in \mathbb{N} \cup \{0\}$, let $D_i := \frac{\partial^i}{\partial x^i}$ and $D_0 = I$ (the identity operator on H). Then $A = -D_2$ is a positive self-adjoint unbounded linear operator with domain D(A). Let $(\lambda_k)_{k \in \mathbb{N}}$ and $(e_k)_{k \in \mathbb{N}} := (\phi_k(x), \psi_k(x))_{k \in \mathbb{N}}$ be the eigenvalues and corresponding eigenfunctions of $A : D(A) \to H$. Then, it holds that

$$\begin{cases} \lambda_k = \frac{\pi^2 k^2}{\ell^2}, \\ \phi_k(x) = \frac{1}{\sqrt{\ell}} \sin\left(\frac{k\pi x}{\ell}\right), \\ \psi_k(x) = \frac{1}{\sqrt{\ell}} \cos\left(\frac{k\pi x}{\ell}\right), \end{cases}$$

and $(e_k)_{k \in \mathbb{N}}$ forms a complete orthonormal basis of *H*. By the properties of the operator *A*, for $s \in \mathbb{R}$, the spectral theory allows us to define the powers A^s of *A* by (see [9])

$$\begin{cases} D(A^{s}) = \left\{ u \in H; \sum_{k=1}^{\infty} \lambda_{k}^{2s} \left(u, e_{k} \right)^{2} < \infty \right\}, \\ A^{s}u = \sum_{k=1}^{\infty} \lambda_{k}^{s} \left(u, e_{k} \right) e_{k}, & \text{for } u \in D(A^{s}), \end{cases}$$

where (\cdot, \cdot) and $|\cdot|$ denote the inner product and the corresponding norm of *H*. We endow the domain $D(A^s)$ of $A^s : D(A^s) \to H$ with the following inner product and the norm

$$\begin{cases} (u, v)_{2s} = (A^s u, A^s v), \\ |u|_{2s} = |A^s u|, \end{cases}$$

Download English Version:

https://daneshyari.com/en/article/840205

Download Persian Version:

https://daneshyari.com/article/840205

Daneshyari.com