Accepted Manuscript

Nanoplasmonic sensors for detecting circulating cancer biomarkers

Advanced
DRUG DELIVERY
Reviews

Abdul Rahim Ferhan, Joshua A. Jackman, Jae Hyeon Park, Nam-Joon Cho, Dong-Hwan Kim

PII: S0169-409X(17)30307-1

DOI: https://doi.org/10.1016/j.addr.2017.12.004

Reference: ADR 13222

To appear in: Advanced Drug Delivery Reviews

Received date: 1 August 2017
Revised date: 29 September 2017
Accepted date: 8 December 2017

Please cite this article as: Abdul Rahim Ferhan, Joshua A. Jackman, Jae Hyeon Park, Nam-Joon Cho, Dong-Hwan Kim, Nanoplasmonic sensors for detecting circulating cancer biomarkers. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Adr(2017), https://doi.org/10.1016/j.addr.2017.12.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Nanoplasmonic Sensors for Detecting Circulating Cancer Biomarkers

Abdul Rahim Ferhan ^a, Joshua A. Jackman ^a, Jae Hyeon Park ^a, Nam-Joon Cho ^{a,*}, Dong-Hwan Kim ^{b,*}

E-mail addresses: njcho@ntu.edu.sg (N.J.C.), dhkim1@skku.edu (D.H.K.)

Abstract

The detection of cancer biomarkers represents an important aspect of cancer diagnosis and prognosis. Recently, the concept of liquid biopsy has been introduced whereby diagnosis and prognosis are performed by means of analyzing biological fluids obtained from patients to detect and quantify circulating cancer biomarkers. Unlike conventional biopsy whereby primary tumor cells are analyzed, liquid biopsy enables the detection of a wide variety of circulating cancer biomarkers, including microRNA (miRNA), circulating tumor DNA (ctDNA), proteins, exosomes and circulating tumor cells (CTCs). Among the various techniques that have been developed to detect circulating cancer biomarkers, nanoplasmonic sensors represent a promising measurement approach due to high sensitivity and specificity as well as ease of instrumentation and operation. In this review, we discuss the relevance and applicability of three different categories of nanoplasmonic sensing techniques, namely surface plasmon resonance (SPR), localized surface plasmon resonance (LSPR) and surface-enhanced Raman scattering (SERS), for the detection of different classes of circulating cancer biomarkers.

<u>Keywords:</u> circulating tumor cells; microRNA; circulating tumor DNA; exosomes; nanoplasmonics; SERS; LSPR

^a School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore.

^b School of Chemical Engineering, Sungkyunkwan University 16419, Republic of Korea.

^{*} Corresponding authors.

Download English Version:

https://daneshyari.com/en/article/8402152

Download Persian Version:

https://daneshyari.com/article/8402152

<u>Daneshyari.com</u>