Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Limit solutions of the Chern-Simons equation

Augusto C. Ponce^a, Adilson E. Presoto^{b,*}

^a Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, bte L7.01.02, 1348 Louvain-la-Neuve, Belgium ^b Universidade Federal de São Carlos, Departamento de Matemática, Rodovia Washington Luís, Km 235, São Carlos, SP, 13565-905, Brazil

ARTICLE INFO

Article history: Received 19 September 2012 Accepted 3 February 2013 Communicated by Enzo Mitidieri

MSC: primary 35R06 secondary 35J25 35J57

Keywords: Elliptic system Exponential nonlinearity Scalar Chern–Simons equation Chern–Simons system Radon measure

ABSTRACT

Given a bounded domain Ω in \mathbb{R}^2 , we investigate the scalar Chern–Simons equation

 $-\Delta u + \mathrm{e}^u(\mathrm{e}^u - 1) = \mu \quad \text{in } \Omega,$

in cases where there is no solution for a given nonnegative finite measure μ . Approximating μ by a sequence $(\mu_n)_{n\in\mathbb{N}}$ of nonnegative L^1 functions or finite measures for which this equation has a solution, we show that the sequence of solutions $(u_n)_{n\in\mathbb{N}}$ of the Dirichlet problem converges to the solution with largest possible datum $\mu^{\#} \leq \mu$ and we derive an explicit formula of $\mu^{\#}$ in terms of μ . The counterpart for the Chern-Simons system with datum (μ, ν) behaves differently and the conclusion depends on how much the measures μ and ν charge singletons.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper we investigate a question concerning convergence and stability of solutions of the scalar Chern-Simons problem

$$\begin{cases} -\Delta u + e^{u}(e^{u} - 1) = \mu & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
(1.1)

where $\Omega \subset \mathbb{R}^2$ is a smooth bounded domain and μ is a finite Borel measure – equivalently a Radon measure – in Ω . By a solution of (1.1), we mean a function $u \in W_0^{1,1}(\Omega)$ such that $e^u(e^u - 1) \in L^1(\Omega)$ and satisfying the equation in the sense of distributions.

Using for instance a minimization argument in $W_0^{1,2}(\Omega)$, one shows that the scalar Chern–Simons equation always has a solution with datum $\mu \in L^p(\Omega)$ for any $1 [1, Chapter 2]. Existence in the case of datum <math>\mu \in L^1(\Omega)$ can be obtained by approximation using L^∞ data [2, Corollary 12]; [1, Chapter 3].

The case of nonlinear Dirichlet problems with measure data is more subtle. This issue has been discovered by Bénilan and Brezis [3–5] in a pioneering work concerning polynomial nonlinearities in dimension greater than 2.

The case of exponential nonlinearities in dimension 2 has been investigated by Vázquez [6]. For instance, if $\mu = \alpha \delta_a$ for some $a \in \Omega$, then for every $\alpha > 2\pi$ the Dirichlet problem (1.1) has no solution with datum μ . The counterexample above

* Corresponding author. E-mail address: presoto@dm.ufscar.br (A.E. Presoto).

CrossMark

 $^{0362\}text{-}546X/\$$ – see front matter S 2013 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2013.02.004

gives the only possible obstruction in the case of exponential nonlinearities: μ is a good measure – that is the Dirichlet problem (1.1) has a solution – if and only if for every $x \in \Omega$,

 $\mu(\{x\}) \le 2\pi.$

We want to understand what happens when one forces the Dirichlet problem to have a solution when no solution is available. For instance, if μ is a measure for which (1.1) has no solution, then one could approximate μ by a sequence $(\rho_n * \mu)_{n \in \mathbb{N}}$ of convolutions of μ – for which we know the Dirichlet problem has a solution – and then investigate the limit of the sequence of solutions $(u_n)_{n \in \mathbb{N}}$.

This program has been proposed and implemented by Brezis, Marcus and Ponce [7] in the case where μ is approximated via convolution. They have proved that for any sequence of nonnegative mollifiers (ρ_n)_{$n \in \mathbb{N}$}, if u_n satisfies

$$\begin{cases} -\Delta u_n + e^{u_n}(e^{u_n} - 1) = \rho_n * \mu & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega, \end{cases}$$

then the sequence $(u_n)_{n \in \mathbb{N}}$ converges in $L^1(\Omega)$ to the largest subsolution u^* of the scalar Chern–Simons problem with datum μ [7, Theorem 4.11].

The result in [7] concerns more general convex nonlinearities and holds in any dimension, but strongly relies on the fact that the approximating sequence $(\rho_n * \mu)_{n \in \mathbb{N}}$ is constructed via convolution of μ [7, Example 4.1].

Our first result shows that for the Chern–Simons equation the conclusion of Brezis, Marcus and Ponce is always true regardless of the sequences of functions – or even measures – $(\mu_n)_{n \in \mathbb{N}}$ converging to μ .

Theorem 1.1. Let $(\mu_n)_{n \in \mathbb{N}}$ be a nonnegative sequence of measures in Ω such that for every $n \in \mathbb{N}$ and for every $x \in \Omega$,

$$\mu_n(\{x\}) \le 2\pi$$

and let u_n satisfy the scalar Chern–Simons problem

$$\begin{cases} -\Delta u_n + e^{u_n}(e^{u_n} - 1) = \mu_n & \text{in } \Omega, \\ u_n = 0 & \text{on } \partial \Omega. \end{cases}$$

If the sequence $(\mu_n)_{n\in\mathbb{N}}$ converges to a measure μ in the sense of measures in Ω , then the sequence $(u_n)_{n\in\mathbb{N}}$ converges in $L^1(\Omega)$ to the solution of the scalar Chern–Simons problem with datum $\mu^{\#}$, where $\mu^{\#}$ is the largest measure less than or equal to μ such that for every $x \in \Omega$,

$$\mu^{\#}(\{x\}) \leq 2\pi.$$

A sequence $(\mu_n)_{n\in\mathbb{N}}$ converges weakly to μ in the sense of measures in Ω , if for every continuous function $\zeta : \overline{\Omega} \to \mathbb{R}$ such that $\zeta = 0$ on $\partial \Omega$,

$$\lim_{n\to\infty}\int_{\Omega}\zeta\,\mathrm{d}\mu_n=\int_{\Omega}\zeta\,\mathrm{d}\mu.$$

We denote this convergence by $\mu_n \stackrel{*}{\rightharpoonup} \mu$ in $\mathcal{M}(\Omega)$, where $\mathcal{M}(\Omega)$ is the vector space of (finite) measures in Ω equipped with the norm

$$\|\mu\|_{\mathcal{M}(\Omega)} = |\mu|(\Omega) = \int_{\Omega} \mathrm{d}|\mu|.$$

Applying Theorem 1.1 we deduce an explicit formula of $\mu^{\#}$ in terms of μ . Indeed, if we write μ as a sum of nonatomic part $\overline{\mu}$ and an atomic part

$$\mu = \overline{\mu} + \sum_{i=0}^{\infty} \alpha_i \delta_{a_i},$$

where $\alpha_i \ge 0$ and the points a_i are distinct, then

$$\mu^{\#} = \overline{\mu} + \sum_{i=0}^{\infty} \min\{\alpha_i, 2\pi\} \delta_{a_i}.$$

Since μ is a finite measure, there can only be finitely many indices *i* such that $\alpha_i > 2\pi$. In particular, the measure $\mu - \mu^{\#}$ is supported in a finite set and for every $a \in \Omega$,

$$\mu^{\#}(\{a\}) = \min\{\mu(\{a\}), 2\pi\}.$$

We may recover the result of Brezis, Marcus and Ponce using their notion of reduced measure μ^* . By definition, the reduced measure is the unique locally finite measure in Ω such that

$$\mu^* = -\Delta u^* + e^{u^*} (e^{u^*} - 1)$$

Download English Version:

https://daneshyari.com/en/article/840240

Download Persian Version:

https://daneshyari.com/article/840240

Daneshyari.com