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a b s t r a c t

A combination method of two-grid discretization approach with a recent finite element
variational multiscale algorithm for simulation of the incompressible Navier–Stokes
equations is proposed and analyzed. The method consists of a global small-scale
nonlinear Navier–Stokes problem on a coarse grid and local linearized residual problems
in overlapped fine grid subdomains, where the numerical form of the Navier–Stokes
equations on the coarse grid is stabilized by a stabilization term based on two local Gauss
integrations at element level and defined by the difference between a consistent and an
under-integrated matrix involving the gradient of velocity. By the technical tool of local
a priori estimate for the finite element solution, error bounds of the discrete solution are
estimated. Algorithmic parameter scalings are derived. Numerical tests are also given to
verify the theoretical predictions and demonstrate the effectiveness of the method.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Large-scale computational fluid problems need large computing resources that may only be provided by high
performance parallel computers or a cluster of workstations. Consequently, with the development of technology for parallel
computing, parallel computation becomes a main tool for simulation of large-scale fluid flows. In such parallel computing,
parallel numerical algorithms play a key role both in ensuring the accuracy of the computed approximate solutions and
in exploiting the full potential of computational power of the parallel computer in use. In general, a computational fluid
dynamicsmodel is based on the solution of the Navier–Stokes equations and its discretization scheme such as finite element
methods, finite volume methods and finite difference methods. Therefore, the development of efficient parallel algorithms
for the Navier–Stokes equations attracts much attention in computational fluid dynamics community (see, e.g., [1–6]).

Recently, based on the philosophy that phenomena of different scales should be treated by different tools and following
the idea of local and parallel finite element computations of Xu and Zhou [7,8], some local and parallel algorithms for
simulation of the Navier–Stokes equations were proposed and analyzed in [9–15]. Motivated by the fact that for a finite
element solution to the Navier–Stokes equations, its global behavior is mostly dominated by the low frequency components
and, on the contrary, the local behavior is basically affected by high frequency components, these algorithms first solve
the fully nonlinear Navier–Stokes equations on a coarse grid by the standard finite element method to approximate the
low frequencies, and then solve the resultant linearized residual equations (which mostly contains the high frequencies) in
overlapped fine grid subdomains to correct the coarse grid solution locally or in parallel.
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However, due to the fact that a fully nonlinear Navier–Stokes problem needs to be solved by the standard finite element
method on a coarse grid, it is challenging for these local and parallel algorithms to simulate high Reynolds number flows. It is
well known that high Reynolds number flows have awide spectrumof scaleswhichmay span several orders ofmagnitude. If
the mesh of the underlying discretization of the Navier–Stokes equations is not fine enough to represent all the scales of the
flow, spurious oscillationsmay occur in numerical simulations leading to an unstable or inaccurate numerical solution.What
is worse, the iterative methods used to solve the nonlinear system may fail to converge and, consequently, cannot yield a
numerical solution at all. This waswell documented in literature. For example, for thewell-known benchmark 2D lid-driven
cavity flow problem, Layton et al. [16] reported that at Re = 3200 and on a 31 × 31 grid mesh, the standard finite element
method combined with a continuationmethod fails to work, while on a 81×81 uniform gridmesh,Wang [17] was just able
to compute a numerical solution at Reynolds numbers up to Re = 5000 by using the standard finite element method. Even
for very simple Navier–Stokes problemswith known analytical solution, He et al. [18] and Shang [19] showed that to ensure
a stable finite element solution at high Reynolds numbers, the underlying mesh size should be small enough. Therefore,
to apply these local and parallel algorithms to the simulation of high Reynolds number flows, stabilization techniques are
essential.

In this paper, we study a combination method of the above mentioned approach to local and parallel finite element
computations with a recent variational multiscale method based on two local Gauss integrations [20]. This combination
is particularly efficient and combines the best algorithmic features of each. Specifically, we first solve a nonlinear
Navier–Stokes problem with a stabilization term on a coarse grid, and then solve a linearized problem in overlapped fine
grid subdomains to correct the solution, where the stabilization term is based on two local Gauss integrations and defined
by the difference between a consistent and an under-integrated matrix involving the gradient of velocity. The method can
be casted into the framework of variational multiscale method. However, compared to the common variational multiscale
methods (cf. [21–24]) where the large scales are defined by projections into appropriate function spaces, this method avoids
the construction of any projection operators and does not need extra storage.

It is noted that the parallel approach of the method developed in this paper is similar to that of [9]; however, there is
significant novelty for two reasons. First, by adding a variationalmultiscale stabilization term to the coarse grid problem, the
method of this paper aims at the simulation of high Reynolds number flows, while that of [9] is limited to the case of low and
moderate Reynolds number flows (due to it uses the standard finite element method to solve the nonlinear Navier–Stokes
equations on the coarse grid which fail to work for high Reynolds number flows as mentioned above). Specifically, for
laminar flows, on one hand, the stabilization used in our method does not degrade rates of convergence and accuracy of
the approximate solution compared to themethod of [9] (see Section 5.1); on the other hand, ourmethod is able to simulate
high Reynolds number flows for which the method of [9] fails to work (please see Section 5.2). As a result, this paper can
be considered as a sequel of the work in [9]. Second, we derive detailed error estimates for the finite element variational
multiscalemethod based on two local Gauss integrations. Although ourmainmotivation is to use them to devise and analyze
our new combination method, these error estimates for the finite element variational multiscale method are theoretically
interesting in their own right; please see Section 3 for detailed information.

An outline of the paper is as follows. In the next section, the functional setting of the Navier–Stokes equations is given
and some mathematical preliminaries for the numerical analysis are provided. In Section 3, the finite element variational
multiscalemethod based on two local Gauss integrations and its error estimates are derived. Local and parallel finite element
variational multiscale algorithms together with their priori error estimates for the Navier–Stokes equations are presented
in Section 4. Section 5 is devoted to numerical tests which verify the theoretical analyses and demonstrate the effectiveness
of the proposed parallel method. Finally, the article is concluded in Section 6.

2. Preliminaries

Let Ω be a bounded domain with Lipschitz-continuous boundary ∂Ω in Rn (n = 2 or 3). As usual, for a nonnegative
integer k, we denote by Hk(Ω) the Sobolev space of functions with square integrable distribution derivatives up to order k
inΩ , equippedwith the standard norm ∥·∥k,Ω , while denote byH1

0 (Ω) the closed subspace ofH1(Ω) consisting of functions
with zero trace on ∂Ω; see, e.g., [25,26]. Moreover, for a subdomain Ω0 ⊂ Ω , we view H1

0 (Ω0) as a subspace of H1
0 (Ω) by

extending the functions in H1
0 (Ω0) to be functions in H1

0 (Ω) with zero outside of Ω0. For D ⊂ Ω0 ⊂ Ω , we use the notation
D ⊂⊂ Ω0 to mean that dist(∂D\ ∂Ω, ∂Ω0 \ ∂Ω) > 0. Throughout this paper, we shall use the letter c or C (with or without
subscripts) to denote a generic positive constant which is independent of the mesh parameter and may take on different
values on different occurrences.

2.1. The Navier–Stokes equations

We consider the following incompressible Navier–Stokes equations:

−ν1u + (u · ∇)u + ∇p = f , in Ω, (2.1)
div u = 0, in Ω, (2.2)
u = 0, on ∂Ω. (2.3)
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