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a b s t r a c t

A 3D expansion of Dijkstra’s algorithm used for automatic segmentation and identification of the bones in
CT images of live pigs was developed and validated. The major bones in the skeletons of 208 out of 485
live pigs (43%) were segmented and identified from the images without major errors. The segmentation
and identification is executed through 8 main operations: (1) identify the full bone structure by a thresh-
old of Hounsfield units, (2) identify forelimbs by voxel connectivity and set landmarks, (3–8) segment out
and identify the individual bones in different main parts of the bone structure by the 3D expansion of
Dijkstra’s algorithm. The algorithms described will constitute an important basis for further work apply-
ing CT in pig breeding and management.

� 2015 Elsevier B.V. All rights reserved.

1. Introduction

Computer Tomography (CT) is a highly suitable method for
identifying bonestructures inside living and dead organisms con-
taining a calcified skeletal structure, typically mammals and fish.
The full skeleton structure might easily be roughly segmented
out from the rest of body tissue by adding a threshold value, typi-
cally around 200 Hounsfield units (HU) (Fiebich et al., 1999), and
by classifying all voxels with larger values as bone.

The ability to segment the carcass into identifiable bones has
several purposes. Our ultimate goal is to construct a complete
labeled body atlas for pigs. Segmented and identified bones from
a plethora of pigs will be indispensable in the process of construct-
ing the atlas, as the skeleton will constitute the framework of the
atlas. The atlas made for mice by Dogdas et al. (2007), is an illustra-
tive example for what we want to achieve. The bone segmentation
might also be used for other purposes, for instance to diagnose dis-
eases or undesirable qualities in the skeleton.

By a method known as atlas-based segmentation (Baiker et al.,
2010; Cuadra et al., 2015), the different parts of the pig, i.e. the CT
scan, might be identified as cuts, muscles, organs etc. The highest
priority is to be able to identify the main commercial cuts in live
animals.

The aim was to describe an approach for automatic segmenta-
tion and identification of the larger bones from CT images of live
domestic pigs. To our knowledge, this is the first automatic algo-
rithm for segmenting pig skeletons in a volume generated from
CT images.

2. Material and methods

2.1. Animals and the CT scan

The material consists of in vivo CT scans from 485 boars at the
Norsvin Delta test station for purebred boars (Norsvin SA). The pigs
were purebred Norsvin Landrace and Duroc boars. The live weight
is as close to 120 kg as practically possible. This is due to 120 kg
representing the end point of the testing period for terminal boars,
and is regarded as the optimal carcass weight (70–80 kg) in
Norway. The samples were selected randomly from the annual
breeding stock of 3500 boars tested in the Norsvin breeding
program. The CT scanner was a GE Healthcare LightSpeed 32 VCT,
and the settings used were 120 kV, slice thickness 1.25 mm and
dynamic mA (400–500 mA) adjusting for object thickness.

Prior to CT scanning, the boars were sedated using Azaperone,
8 mg/kg i.m. (Stresnil Vet R, Janssen-Cilag Ltd, Buckinghamshire,
UK). Boars were scanned, 45 min after injection, as the sedation
was given to help facilitate the scanning procedure and improve
image quality. All animals were cared for according to the laws
and regulations for keeping pigs in Norway (Aasmundstad et al.,
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2013). After sedation, the pigs were transported to the CT scanner
using a crib made of fiberglass.

The software MATLAB (MATLAB, 2014), including the Image
Processing Toolbox, was used for the segmentation. The code for
landmark identification and the 3D expansion of Dijkstra’s algo-
rithm was written from scratch. MATLAB code for a function con-
ducting the 3D expansion of Dijkstra’s algorithm will be provided
by authors upon request.

2.2. General methods for segmentation

We applied three main principles for identifying and segment-
ing the individual bones; (i) segmentation by connectivity, (ii)
identification of points and lines and (iii) a 3D expansion of
Dijkstra’s algorithm.

Segmentation by connectivity was primarily involved at the
start of the process. A binary 3D image was constructed by apply-
ing a threshold value for bone (HU > 180). The different connected
objects in this 3D binary image were labeled by the MATLAB func-
tion ‘‘bwconncomp”, which takes a binary image as input and
returns an image where each connected object is labeled with a
specific value. The connected objects inside the 3D binary image
were identified by ranking their volumes or mass center points.
The 4 largest connected objects from a randomly selected pig are
shown in Fig. 1.

To identify landmarks, 2D projections of the skeleton were used
extensively. The principles are explained through an example illus-
trated in Fig. 2. The steps were as follows:

1. A 2D image containing the sums of bone-voxels perpendicular
to the sagittal plane (in this example) was constructed, i.e. high
intensity areas represent areas with thick bones. One point,
approximately corresponding to Trochanter major, was already
known from similar techniques, as illustrated in Fig. 2a.

2. Based on the known point, a new region of interest (ROI) was
defined based on euclidian distances. Points closer than
50 mm, a figure set a priori based on experience, from the
known point were ‘‘masked out”, (Fig. 2b).

3. A new point was set at the point having maximal intensity
inside the new ROI (Fig. 2c).

4. Steps similar to steps 2–3 were redone to find the rest of the
points of interest resulting in a set of four ‘‘known fixed points”
as illustrated in Fig. 2d.

5. A variant of this method is to define the ROI as a line, for
instance the upper part of the spine, by using the MATLAB func-
tion ‘‘bwboundaries”. The points on top of each vertebra and
points between vertebras are set successively at local maximum
and minimum sagittal values for this line.

Most of the bones had to be segmented and treated one by one.
Dijkstra’s algorithm (Dijkstra, 1959), a basic method of image anal-
ysis, is well known for identifying the cheapest path between two
nodes, and is thereby a suitable method for separating different
objects in a 2D image. The method we applied might be viewed
as an expansion of Dijkstra’s algorithm in order to separate a 3D,
not 2D, object.

The first step was to identify a ROI (3D array) that encapsulates
the surface in which the two bones were connected. These ROIs
were automatically constructed based on the identified landmarks
and prior information on bone dimensions and the spatial orienta-
tion of bones. As an example, the ROI illustrated by the box in Fig. 3
was constructed via a landmark in the top of the overarm, i.e. the
lower right corner of the box. The horizontal distance for the ROI
was set by prior knowledge. The two remaining dimensions of
the ROI were easily set by the extreme values for bone voxels
within the horizontal limitation.

In the next paragraphs, we will view the 3D binary input array
(bone/ not bone) inside the ROI as a stack of 2D layers. For each
layer, a virtual cut is constructed in the ‘‘cutting direction”. The
sum of these cuts constitutes the segmentation surface. The direc-
tions of the layers and the cutting direction varied with the main
direction of the segmentation surface, and were set based on prior
knowledge. For instance, vertebras were split approximately paral-
lel to the transverse plane, pelvis was segmented from spine
approximately parallel to the sagittal plane etc. When the segmen-
tation surface is approximately parallel to the transverse plane as
shown in Fig. 3, the layer direction is from top to bottom and cut-
ting direction is from the right to left side of the pig. The two bones
to be segmented had to penetrate the two opposite sides of the
input array orientated perpendicular to both cutting- and layer-
direction.

The first step of Dijkstra’s algorithm (2D) is to construct a cost
matrix, i.e. a matrix defining the minimum cumulative cost of
including any voxel to the virtual cut. The cost matrix for all layers
was constructed by the standard Dijkstra’s algorithm. For the first
layer, the input to the algorithm was the first layer of the binary
input array. For the next layers the input consisted of the sum of
the cost matrix from the previous layer and the corresponding
layer of the input array. The final 3D cost array was the array of
stacked 2D cost matrices.

The next step in Dijkstra’s algorithm is to construct the cheapest
path, i.e. the segmentation surface. For all layers, these paths were
constructed via the standard 2D Dijkstra’s algorithm based on the
corresponding layers from the 3D cost array. The algorithm started
with the last layer. After the path in one layer was identified, a
region of ‘‘possible paths”, i.e. points connected to the identified
path, was identified for the next layer. All points outside this pos-

(b)(a)
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Central skeletonCrib
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Fig. 1. An example of segmentation thorough connectivity. The 4 panels represents the 4 largest connected objects, i.e. crib (a), ‘‘central skeleton” (b), left forelimb (c), and
right forelimb (d). The input is a binary image produced by setting a threshold at 180 HU for a CT image of a random pig.
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