Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Local Hölder regularity of the gradients for the elliptic p(x)-Laplacian equation

Fengping Yao*

Department of Mathematics, Shanghai University, Shanghai 200444, China

ARTICLE INFO

Article history: Received 17 September 2012 Accepted 24 September 2012 Communicated by Enzo Mitidieri

MSC: 35J60 35J70

Keywords: $C^{1,\alpha}$ Hölder Regularity Gradient Divergence Elliptic p(x)-Laplacian

1. Introduction

In this paper we mainly study the interior Hölder regularity of the gradients of weak solutions for the following elliptic p(x)-Laplacian equation

$$\operatorname{div}\left(\left(A\nabla u\cdot\nabla u\right)^{\frac{p(x)-2}{2}}A\nabla u\right) = \operatorname{div}\left(\left|\mathbf{f}\right|^{p(x)-2}\mathbf{f}\right) \quad \text{in } \Omega,$$
(1.1)

where Ω is an open bounded domain in \mathbb{R}^n , $\mathbf{f} = (f^1, \dots, f^n)$ is a given vector field and $A = \{a_{ij}\}$ is a symmetric matrix with measurable coefficients satisfying

$$1 < \gamma_1 = \inf_{\Omega} p(x) \le \sup_{\Omega} p(x) = \gamma_2 < \infty, \tag{1.2}$$

$$\Lambda^{-1}|\xi|^2 \le A(x)\xi \cdot \xi \le \Lambda|\xi|^2 \tag{1.3}$$

and

$$p(x) \in C_{loc}^{0,\alpha_1}(\Omega), \qquad f^i(x) \in C_{loc}^{0,\alpha_2}(\Omega) \quad \text{and} \quad a_{ij}(x) \in C_{loc}^{0,\alpha_3}(\Omega)$$

$$(1.4)$$

for any ξ , $x \in \mathbb{R}^n$ and $1 \le i, j \le n$, where $\alpha_1, \alpha_2, \alpha_3, \Lambda > 0$ are positive constants.

* Tel.: +86 21 66132182; fax: +86 21 66133292. *E-mail address:* yfp@shu.edu.cn. $A \hspace{0.1cm} B \hspace{0.1cm} S \hspace{0.1cm} T \hspace{0.1cm} R \hspace{0.1cm} A \hspace{0.1cm} C \hspace{0.1cm} T$

In this paper we obtain the interior Hölder regularity of the gradients of weak solutions for the elliptic p(x)-Laplacian equation

$$\operatorname{div}\left(\left(A\nabla u\cdot\nabla u\right)^{\frac{p(x)-2}{2}}A\nabla u\right) = \operatorname{div}\left(\left|\mathbf{f}\right|^{p(x)-2}\mathbf{f}\right)$$

under some proper assumptions on the Hölder continuous functions *p*, **f** and *A*. © 2012 Elsevier Ltd. All rights reserved.

 $^{0362\}text{-}546X/\$$ – see front matter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2012.09.017

When p(x) is a constant, many authors [1–7] studied the regularity for weak solutions of quasilinear elliptic equations of *p*-Laplacian type. When p(x) is not a constant, such elliptic problems (1.1) appear in mathematical models of various physical phenomena, such as the electro-rheological fluids (see, e.g., [8–10]). Especially when A = I and $\mathbf{f} = 0$, (1.1) is reduced to the p(x)-Laplacian elliptic equation

$$\operatorname{div}\left(|\nabla u|^{p(x)-2}\nabla u\right) = 0 \quad \text{in } \Omega, \tag{1.5}$$

which can be derived from the variational problem

$$\Phi(u) = \min_{v|_{\partial\Omega} = \varphi} \Phi(v) =: \min_{v|_{\partial\Omega} = \varphi} \int_{\Omega} \frac{1}{p(x)} |\nabla v|^{p(x)} dx$$

There have been many investigations [11–13] on Hölder estimates for the p(x)-Laplacian elliptic equation (1.5). Recently, Challal and Lyaghfouri [14] obtained the local L^{∞} estimates of $|\nabla u|^{p(x)}$ for the weak solutions of (1.5). Moreover, Acerbi and Mingione [15] have proved that

$$|\mathbf{f}|^{p(x)} \in L^q_{loc}(\Omega) \Longrightarrow |\nabla u|^{p(x)} \in L^q_{loc}(\Omega) \quad \text{for any } q > 1$$

for weak solutions of (1.1) under some assumptions on p(x).

We denote by $L^{p(x)}(\Omega)$ the variable exponent Lebesgue–Sobolev spaces

$$L^{p(x)}(\Omega) = \left\{ f : \Omega \to \mathbb{R} \mid f \text{ is measurable and } \int_{\Omega} |f|^{p(x)} \, dx < \infty \right\}$$
(1.6)

with the Luxemburg type norm

$$\|f\|_{L^{p(x)}(\Omega)} = \inf \left\{ \lambda > 0 : \int_{\Omega} \left| \frac{f}{\lambda} \right|^{p(x)} dx \le 1 \right\}.$$
(1.7)

Furthermore, we define

$$W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$
(1.8)

with the norm

$$\|u\|_{W^{1,p(x)}(\Omega)} = \|u\|_{L^{p(x)}(\Omega)} + \|\nabla u\|_{L^{p(x)}(\Omega)}.$$
(1.9)

By $W_0^{1,p(x)}(\Omega)$ we denote the closure of $C_0^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$. Actually, the $L^{p(x)}(\Omega)$, $W^{1,p(x)}(\Omega)$ and $W_0^{1,p(x)}(\Omega)$ spaces are Banach spaces. There have been many investigations (see for example [16–21]) on properties of such variable exponent Sobolev spaces.

As usual, the solutions of (1.1) are taken in a weak sense. We now state the definition of weak solutions.

Definition 1.1. Assume that $\mathbf{f} \in L^{p(x)}_{loc}(\Omega)$. A function $u \in W^{1,p(x)}_{loc}(\Omega)$ is a local weak solution of (1.1) in Ω if for any $\varphi \in W^{1,p(x)}_0(\Omega)$, we have

$$\int_{\Omega} \left(A \nabla u \cdot \nabla u \right)^{\frac{p(x)-2}{2}} A \nabla u \cdot \nabla \varphi \, dx = \int_{\Omega} |\mathbf{f}|^{p(x)-2} \mathbf{f} \cdot \nabla \varphi \, dx.$$

Now let us state the main result of this work.

Theorem 1.2. If u is a local weak solution of problem (1.1) under the assumptions (1.2)–(1.4), then ∇u is locally Hölder continuous.

2. Proof of the main result

In this section we shall finish the proof of Theorem 1.2. We first recall the following reverse Hölder inequality.

Lemma 2.1 (See [15, Lemma 5]). If u is a local weak solution of problem (1.1) under the assumptions (1.2)–(1.4), then there exist positive constants σ_0 , $R_0 < 1$, C, depending on n, γ_1 , γ_2 , Λ , such that

$$\int_{B_{R/2}} |\nabla u|^{p(x)(1+\sigma)} \, dx \le C \left(\int_{B_R} |\nabla u|^{p(x)} \, dx \right)^{1+\sigma} + C \left(\int_{B_R} 1 + |\mathbf{f}|^{p(x)(1+\sigma)} \, dx \right)$$

holds for any $R \leq R_0$ and $\sigma \leq \sigma_0$.

80

Download English Version:

https://daneshyari.com/en/article/840260

Download Persian Version:

https://daneshyari.com/article/840260

Daneshyari.com