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a b s t r a c t

Weprove new results regarding the existence, uniqueness, (eventual) boundedness, (total)
stability and attractivity of the solutions of a class of initial–boundary-value problems
characterized by a quasi-linear third-order equation which may contain time-dependent
coefficients. The class includes equations arising in superconductor theory and in the
theory of viscoelastic materials. In the proof we use a Liapunov functional V depending
on two parameters, which we adapt to the characteristics of the problem.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

As is known, dealingwith (in)stability in non-autonomous problems in general requires careful generalizations of criteria
andmethods valid for autonomous problems, even in linear, finite-dimensional systems (see e.g. [1–5]). The Liapunov direct
method in its general formulation applies to non-autonomous (as well as to autonomous) systems, but the construction of
Liapunov functions is more complicated.

In this paper we consider a class of non-autonomous initial–boundary-value problems having a number of different
physical applications and prove new results regarding the existence, uniqueness, boundedness, stability and attractivity of
their solutions; the problems have the form

Lϕ = h(x, t,Φ), L(t) := ∂2t + a∂t − C(t)∂2x − ε(t)∂2x ∂t x ∈]0, π[, t > t0,
ϕ(0, t) = φ0(t), ϕ(π, t) = φπ (t),

(1.1)

ϕ(x, t0) = ϕ0(x), ϕt(x, t0) = ϕ1(x). (1.2)

Here Φ := (ϕ, ϕx, ϕt), t0 ≥ 0, ε ∈ C2(I, I), C ∈ C1(I,R+) (with I := [0,∞[) are functions of t , with C(t) ≥ C = const >
0; a = const, ε(t) ≥ 0, h ∈ C([0, π] × I × R3); φ0, φπ ∈ C2(I), u0, u1 ∈ C2([0, π]) are assigned and fulfill the consistency
conditions

φ0(t0) = ϕ0(0), φ̇0(t0) = ϕ1(0), φπ (t0) = ϕ0(π), φ̇π (t0) = ϕ1(π). (1.3)
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Fig. 1. Josephson junction (left) and schematic representation of a Voigt material (right). W , L are the width and length of the JJ; Is,H are the total
superconducting current and the external magnetic field.

We wish to compare problem (1.1) + (1.2) to the perturbed one
Lw = h(x, t,W )+ k(x, t), x ∈]0, π[, t > t0,
w(0, t) = φ0(t)+ w0(t), w(π, t) = φπ (t)+ wπ (t),

(1.4)

w(x, t0) = ϕ0(x)+ w0(x), wt(x, t0) = ϕ1(x)+ w1(x) (1.5)

where W := (w,wx, wt), k ∈ C([0, π] × I), w0, wπ ∈ C2(I), w0, w1 ∈ C2([0, π]) are assigned and fulfill the consistency
conditions

w0(t0) = w0(0), ẇ0(t0) = w1(0), wπ (t0) = w0(π), ẇπ (t0) = w1(π). (1.6)

Defining

p(x, t) :=
x
π
wπ (t)+


1 −

x
π


w0(t), u := w − ϕ − p, u0(x) := w0(x)− p(x, t0),

u1(x) := w1(x)− (∂tp)(x, t0) f (x, t,U) := h(x, t,U + Φ + P)− h(x, t,Φ)− (Lp)(x, t)+ k(x, t),
(1.7)

where U := (u, ux, ut), P := (p, px, pt), we find that u fulfills the initial–boundary-value problem
Lu = f (x, t,U), x ∈]0, π[, t > t0,
u(0, t) ≡ 0, u(π, t) ≡ 0, (1.8)

u(x, t0) = u0(x), ut(x, t0) = u1(x). (1.9)

u0, u1 automatically fulfill the consistency condition u0(0) = u1(0) = u0(π) = u1(π) = 0. This shows that we can reduce
the questions of stability, the attractivity of some ϕ and the boundedness of w − ϕ to those of the corresponding u around
the origin u ≡ 0. Note that if w0 ≡ wπ ≡ 0, then p ≡ 0, P ≡ 0, k ≡ 0, f (x, t, 0) = 0, and problem (1.8) admits the null
solution, u(x, t) ≡ 0. In (1.1), (1.8) the ε-term is dissipative at t if ε(t) > 0, and the a-term is too if a > 0.

Physically remarkable examples of problems (1.1) + (1.2) include:

– If h = b sinϕ − γ , with b, γ = const, a modified sine–Gordon equation describing the Josephson effect [6] in the theory
of superconductors, which lies at the base (see e.g. [7]) of a large number of advanced developments both in fundamental
research (e.g. macroscopic effects of quantum physics, quantum computation) and in applications to electronic devices
(see e.g. Chapters 3–6 in [8]): ϕ(x, t) is the phase difference of the macroscopic wavefunctions of the Bose–Einstein
condensate of Cooper pairs in two superconductors separated by a Josephson junction (JJ), i.e. a very thin and narrow
dielectric strip of finite length (Fig. 1-left), the γ -term is the (external) ‘‘bias current’’ providing energy to the system, the
term aϕt is due to the Joule effect of the residual current of single electrons across the JJ, and the term εϕxxt is due to the
surface impedance of the JJ. In the simplest model adopted for describing the JJ, the parameters ε, C are constant (ε is
rather small), and a = 0; more accurately, a is positive but very small; evenmore accurately, h = b sinϕ−γ −βϕt cosϕ
and ε, C, β are positive (ε, β are very small), and depend on the temperature and on the voltage applied to the JJ (see
e.g. [9]), which can be controlled and variedwith t . Also γ can be variedwith t . Finally, if γ , or the temperature [10], or the
width of the junction [11,12] is spatially dependent, then new terms linear in ϕx may appear in the equation; in particular
if the width is exponentially shaped, the system may be modeled using the choice h = b sinϕ − γ − βϕt cosϕ − λϕx
(λ = const).

– If a = 0, h = h(x, t), an equation (see e.g. [13,14]) for the displacement ϕ(x, t) of the section of a rod from its rest position
x in a Voigt material: h is the applied density force, C ≡ c2 = E/ρ, ε = 1/ρη, where ρ is the linear density of the rod at
rest, E, η are the elastic and viscous constants of the rod, which enter the stress–strain relation σ = Eν+∂tν/η, where σ
is the stress, and ν is the strain (as is known, a discretized model of the rod is a series of elements consisting of a viscous
damper and an elastic spring connected in parallel as shown in Fig. 1-right). Again, E, ηmay depend on the temperature
of the rod, which can be controlled and varied with t .

– Equations used to describe: heat conduction at low temperature ϕ [15–17], if ε = c2, h = 0; sound propagation in
viscous gases [18]; propagation of plane waves in perfect incompressible and electrically conducting fluids [19].
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