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a b s t r a c t

This study deals with the analysis of the Cauchy problem of a general class of nonlocal
nonlinear equations modeling the bi-directional propagation of dispersive waves in
various contexts. The nonlocal nature of the problem is reflected by two different elliptic
pseudodifferential operators acting on linear and nonlinear functions of the dependent
variable, respectively. The well-known doubly dispersive nonlinear wave equation that
incorporates two types of dispersive effects originated from two different dispersion
operators falls into the category studied here. The class of nonlocal nonlinear wave
equations also covers a variety of well-knownwave equations such as various forms of the
Boussinesq equation. Local existence of solutions of the Cauchy problem with initial data
in suitable Sobolev spaces is proven and the conditions for global existence and finite-time
blow-up of solutions are established.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In this studywemainly establish local existence, global existence and blow-up results for solutions of the Cauchy problem

utt − Luxx = B(g(u))xx, x ∈ R, t > 0, (1.1)
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), (1.2)

where g is a sufficiently smooth nonlinear function, L and B are linear pseudodifferential operators defined by

F (Lv) (ξ) = l(ξ)F (v)(ξ), F (Bv) (ξ) = b(ξ)F (v)(ξ).

Here F denotes the Fourier transform with respect to variable x and l(ξ) and b(ξ) are the symbols of L and B, respectively.
We assume that L is an elliptic coercive operator of order ρ with ρ ≥ 0 while B is an elliptic positive operator of order −r
with r ≥ 0. In terms of l(ξ) and b(ξ), this means that there are positive constants c1, c2 and c3 so that for all ξ ∈ R,

c21 (1 + ξ 2)ρ/2 ≤ l(ξ) ≤ c22 (1 + ξ 2)ρ/2, (1.3)

0 < b(ξ) ≤ c23 (1 + ξ 2)−r/2. (1.4)
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Weemphasize the fact that, for non-polynomial function l(ξ) or nonzero b(ξ), the equation under investigation is of nonlocal
type. While the operator L is associated with the regularization resulting from the linear dispersion, the operator B is
associated with the regularization resulting from the smoothing of the nonlinear term. In order to reflect more clearly the
double nature of the dispersive effects, it is convenient to rewrite (1.1) in a slightly different form. Taking B = (I + M)−1

where I is the identity operator and M is an elliptic positive pseudodifferential operator of order r > 0, we rewrite (1.1) in
the form

utt − L̃uxx + Mutt = (g(u))xx (1.5)

with L̃ = (I + M)L. The second and third terms on the left-hand side of this equation represent two sources of dispersive
effects. The relation ξ → ω2(ξ) = ξ 2 l̃(ξ)/ (1 + m(ξ)) where l̃(ξ) and m(ξ) are the symbols of L̃ and M , respectively,
will be referred to as the linear dispersion relation for (1.5). Since the symbols of L̃ andM will appear in the numerator and
denominator, respectively, of the linear dispersion relation,we informally describe the twodispersive effects as ‘‘numerator-
based’’ dispersive effect and a ‘‘denominator-based’’ dispersive effect to emphasize the double nature of dispersion.

Even though our main interest lies primarily in understanding the role of pseudodifferential operators L, B, it is worth
noting thatwhen l(ξ) is a polynomial, L becomes a differential operator and similarly that, when b(ξ) equals the reciprocal of
a polynomial, B becomes the Green function of the corresponding differential operator. In the polynomial case, the equation
under investigation (that is, (1.1) or (1.5)) turns out to be some well-known nonlinear wave equations for suitable choices
of the operators L̃ and M . For instance, we may note that, with the substitution L̃ = 1 − ∂2x and M = −∂2x , (1.5) reduces to
the so-called double dispersion equation

utt − uxx − uxxtt + uxxxx = (g(u))xx. (1.6)

This equation is the most familiar example or special case of (1.1) and was derived in many different contexts (see, for
instance, [1,2] where it describes the propagation of longitudinal strain waves in a nonlinearly elastic rod). Thus, (1.5) might
be referred to as a natural generalization of the double dispersion equation through the nonlocal operators L and B.

We also point out that (1.5) reduces to the Boussinesq equation

utt − uxx + uxxxx = (g(u))xx (1.7)

with the substitution L̃ = 1− ∂2x andM = 0 (the zero operator), while it becomes the improved (or regularized) Boussinesq
equation

utt − uxx − uxxtt = (g(u))xx (1.8)

with the substitution L̃ = I and M = −∂2x [3,4]. Also, assuming L = 0 and considering the operator B as a convolution

(Bv)(x) = (β ∗ v)(x) =


β(x − y)v(y)dy

with the kernel β(x) = F −1 (b(ξ))where F −1 denotes the inverse Fourier transform, we observe that (1.1) reduces to

utt =


β(x − y)g(u(y, t))dy


xx
. (1.9)

This equation was derived in [5] to model the propagation of strain waves in a one-dimensional, homogeneous, nonlinearly
and nonlocally elastic infinite medium (see [6,7] for its coupled form and two-dimensional form, respectively). Our
inspiration for the present study comes essentially from (1.9) modeling an integral-type nonlocality of elastic materials.
In the present study we add to (1.9) the other type of nonlocality, originating from the inclusion of linear higher order
gradients, and focus on how the qualitative results obtained for (1.9) in [5] carry over to (1.1).

There is quite an extensive literature on thewell-posedness of the Cauchy problem for the Boussinesq equation (1.7) (see
e.g., [8–11]), for the improved Boussinesq equation (1.8) and its higher order generalizations (see e.g., [12–17]) and for the
double dispersion equation (1.6) (see e.g., [18]). In [5] consideration was given to the well-posedness of the Cauchy problem
for the nonlocal equation (1.9). The question that naturally arises is under which conditions the Cauchy problem (1.1)–(1.2)
is well-posed and this is the subject of the present study.

The paper is organized as follows. To simplify the presentation, through Sections 2–5, the special case where B is the
identity operator will be treated and the modifications that would be needed for the general case will be given in Section 6.
That is, in Sections 2–5 the Cauchy problem for the equation

utt − Luxx = (g(u))xx (1.10)

is only considered; while the Cauchy problem (1.1)–(1.2) is considered in Section 6. In Section 2, the required a priori
estimates are established for the linearized version of the Cauchy problem. In Section 3, the local existence and uniqueness
for the nonlinear Cauchy problem is proven using the contraction mapping principle. The main theorems stating the global
existence and uniqueness of the solution are demonstrated in Section 4. The blow-up criterion is presented in Section 5.
Finally, in Section 6, the global existence and blow-up results obtained through Sections 2–5 are extended to the Cauchy
problem (1.1)–(1.2).
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