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16Although significant progress has been made in experimental high throughput screening (HTS) of ADME (ab-
17sorption, distribution, metabolism, excretion) and pharmacokinetic properties, the ADME and Toxicity
18(ADME–Tox) in silicomodeling is still indispensable in drug discovery as it can guide us towisely select drug can-
19didates prior to expensive ADME screenings and clinical trials. Compared to other ADME–Tox properties, human
20oral bioavailability (HOBA) is particularly important but extremely difficult to predict. In this paper, the advances
21in human oral bioavailability modeling will be reviewed. Moreover, our deep insight on how to construct more
22accurate and reliable HOBA QSAR and classification models will also discussed.

23 © 2015 Published by Elsevier B.V.
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441. Introduction

45It is estimated that the entire chemical space exceeds 1060 mole-
46cules, and it is impossible to synthesize all of them given the fact that
47the total weight of earth is only about 6.0 × 1027 g. As amatter of fact,
48only 27 million compounds have been registered [1] Q5. Even though
49the synthesized compounds only occupy a tiny fraction of the entire
50chemical space, it is much larger than the biological chemical space
51due to the fact that there are a few thousands of small molecules
52within our own bodies. As the biological chemical space only repre-
53sent an amazingly small fraction of the entire chemical space, it is
54understandable that to discover small molecules that efficiently in-
55teract with protein targets is a very difficult task. Although numerous
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56 new technologies, such as combinatorial chemistry, high throughput
57 screening and computer-aided drug design have been applied to fa-
58 cilitate the discovery of new drugs, the number of newmolecular en-
59 tities approved annually by FDA (U.S. Food and Drug Administration)
60 has not changed significantly in the last two decades. What are the
61 major reasons that cause the attrition of drug candidates during clin-
62 ical trials? The lack of efficiency and poor ADME–Tox (absorption,
63 distribution, metabolism, excretion, and toxicity) and pharmacoki-
64 netics are responsible for most of the drug attrition [2].
65 Among the many ADME–Tox/PK properties, bioavailability is partic-
66 ularly important for the orally administered drugs. Today, high through-
67 put screenings of human oral bioavailability (HOBA) are routinely
68 conducted in pharmaceutical companies. However, the in vitro and
69 in vivo assays are much time consuming and costly. Only a tiny fraction
70 of synthesized and screened compounds are selected to do the analysis.
71 In silico HOBAmodeling, on the other hand, is muchmore efficient and
72 can dealwith large screening libraries. Moreover, in silico HOBAmodels
73 can serve as drug likeness filters to prioritize screening libraries. Those
74 filters typically have better discriminative power than the conventional-
75 ly used drug likeness filters, like Lipinski's ‘Rule of Five’ [3]. It is a trend
76 that in silico ADME–Tox models, particularly HOBA, are incorporated
77 into the paradigm of drug lead identification and optimization
78 procedures [4–16].

79 1.1. ADME–Tox

80 As one of the hot fields in computer-aided drug design (CADD), nu-
81 merous reviews have been published recently on the progress of
82 ADME–Tox modeling [17–21], here in this paper we only focus on the
83 latest advances of in silico modeling of human oral bioavailability.
84 ADME–Tox properties can be broadly classified into two categories,
85 namely, the “physicochemical” and “physiological”. The physicochemi-
86 cal properties, including aqueous solubility, logarithm of octanol–water
87 partition coefficient (logP), logarithm of octanol–water distribution
88 coefficient (logD)Q6 , pKa, etc., are governed by simple physicochemical
89 laws. The physiological ADME–Tox properties can be further
90 grouped into in vitro ADME–Tox properties (such as Caco-2 perme-
91 ability and MDCK permeability, liver microsomes) and in vivo
92 pharmacokinetic properties (such as oral bioavailability, human in-
93 testinal absorption—HIA, plasma protein binding—PPB, urinary ex-
94 cretion, area under the plasma concentration–time curve (AUC),
95 total body clearance (Cl), volume of distribution, elimination half
96 time (t1/2)). As physiological ADME–Tox properties, particularly
97 oral bioavailability, are governed by many factors, it is a very chal-
98 lenging task to adequately model and accurately predict the physio-
99 logical ADME–Tox properties.

100 1.2. Human oral bioavailability

101 Oral bioavailability (OBA) is one of the most important pharma-
102 cokinetic properties in drug discovery. As the oral form is the most
103 convenient way to administrate a drug, it is not a surprise that
104 about 80% of the dosage forms in the worldwide market are admin-
105 istrated orally [22]. OBA represents the percentage of an oral dose
106 that is available to produce pharmacological actions. In practice,
107 OBA is defined as the fraction of the oral dose that reaches the system
108 circulation in an active form and measured by the ratio of the dose-
109 corrected AUCQ7 (area under curve) of the oral route to that of the in-
110 travenous route. For an oral drug, the amount of the active form
111 that reaches the system circulation is reduced due to incomplete ab-
112 sorption in gastrointestinal track and the first-pass metabolism.
113 Therefore, oral bioavailability is ranged from 0 to 100%.
114 It is a very challenging task to adequately model and accurately
115 predict the oral bioavailability of a drug because this physiological
116 property is a complex function of many biological and physicochem-
117 ical properties, which include the aqueous solubility of the drug in

118the gastrointestinal tract, the intestinal membrane permeability,
119and the extent of the first-pass metabolism which occurred in the
120liver, gut and intestine, and even the dosage form of the drug. More-
121over, the measurement of the oral bioavailability of a drug is affected
122by other factors like whether the drug is taken with or without food,
123whether other drugs are taken concurrently, as well as the disease
124states. Those factors may alter the drug absorption, and the liver me-
125tabolism. For example, the oral bioavailability of patients with liver
126disease may be increased due to the reduced liver metabolism. The
127above factors may vary from patient to patient and from time to
128time for the same patient. This complicate picture explains why the
129measurement errors of oral bioavailability are very large. According
130to the survey of 367 drugs conducted by Wang et al.- [23], the aver-
131age unsigned error and root-mean square error of the experimental
132measurements are 12.1 and 14.5%, respectively.
133In order to develop an oral drug with high bioavailability, medicinal
134chemists apply a simple rule to select drug candidates: those having
135high aqueous solubility and high membrane permeability tend to have
136high OBA; those having low aqueous solubility and low permeability
137tend to have poor OBA; and the others might need careful formulation
138to improve their dissolution or absorption rate. This simple rule is
139based on the fact that drug dissolution and permeability control the
140rate and extent of drug absorption in the GI track. Certainly, a drug
141with high oral bioavailability should also be largely free from fast-pass
142metabolism.

1431.3. In silico models of HOBA prediction

144Attempts have been made to predict HOBA back to year 2000 by
145Andrews, Bennett and Xu [24], and Yoshida and Topliss [25,26].
146Later on, numerous models were published [25,27,28] and
147reviewed by ourselves [29], and others [30]. The following is a
148brief summary of HOBA models developed prior to 2008: most
149models were developed using relatively small data sets (n b 600)
150and they merely make reliable prediction for the compounds in
151the screening libraries. For the classification models developed be-
152fore 2008, the rates of the correct assignment are usually lower
153than 70%; for the QSAR models, the RMSEs are ranged from 24 to
15430%. In the following sections, we will present reviews on the latest
155HOBA models. Q8

1562. Recent advances in HOBA modeling

157In 2008, a classifier was developed by Ma et al. with GA (genetic
158algorithm)–CG (conjugated gradient)–SVM (support vector
159machine) method for 866 compounds that have human oral bio-
160availability data [31]. GA was applied to select descriptors that
161were calculated using Cerius 2 software package (http://www.
162accelyrs.com), while SVM was used to construct classification
163model and CG was applied to optimize the parameters of kernel
164functions of SVM. The prediction Q9accuracy, 80% for the training set
165(690 compounds) and 86% for the test set (76 compounds) is encour-
166aging. However, the classifier has poor performance for the “nega-
167tive” class: the prediction accuracy is only 44% and the false
168positive (FP) is even larger than true negative (TN). This phenome-
169non can be explained by that fact that a very small cutoff of 20%
170was applied to assign ‘positive’ and ‘negative’ classes. Even if the pre-
171diction accuracy is good, it cannot be used to further discriminate the
172compounds that belong to the “positive” class Q10.
173In 2009, a set of predictive models for human bioavailability were
174developed by Imawaka et al. using the human oral administration
175data and animal pharmacokinetic data as descriptors [32].

OBA ¼ AUCpo=Dosepo
AUCiv=Doseiv

¼ CLtot
CLpo

¼ β � Vdβ
CLpo

ð1Þ
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