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17Drug–drug interactions (DDIs) are associated with severe adverse effects that may lead to the patient requiring al-
18ternative therapeutics and could ultimately lead to drug withdrawal from themarket if they are severe. To prevent
19the occurrence of DDI in the clinic, experimental systems to evaluate drug interaction have been integrated into the
20various stages of the drug discovery and development process. A large body of knowledge about DDI has also accu-
21mulated through these studies and pharmacovigillence systems.Much of this work to date has focused on the drug
22metabolizing enzymes such as cytochrome P-450s aswell as drug transporters, ion channels and occasionally other
23proteins. This combined knowledge provides a foundation for a hypothesis-driven in silico approach, using either
24cheminformatics or physiologically based pharmacokinetics (PK) modeling methods to assess DDI potential. Here
25we review recent advances in these approaches with emphasis on hypothesis-driven mechanistic models for im-
26portant protein targets involved in PK-based DDI. Recent efforts with other informatics approaches to detect DDI
27are highlighted. Besides DDI, we also briefly introduce drug interactions with other substances, such as Traditional
28Chinese Medicines to illustrate how in silico modeling can be useful in this domain. We also summarize valuable
29data sources and web-based tools that are available for DDI prediction. We finally explore the challenges we see
30faced by in silico approaches for predicting DDI and propose future directions tomake these computational models
31more reliable, accurate, and publically accessible.
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60 this phenomenon is termed a drug–drug interaction (DDI). In the ma-
61 jority of cases a DDI is an undesirable and yet avoidable event. Positive
62 uses of DDIs do exist, for example so called ‘boosters’ which enhance
63 the pharmacokinetics of drugs that are extensively metabolized by
64 P450s [1–3], also prevention of peripheral metabolism of DOPA-
65 decarboxylase inhibitors by co-administration of L-DOPA [4]. However
66 we (as have others in past reviews of DDI) [5–7] have focused on the
67 negative effects induced byDDIs in this review. DDIs frequently compli-
68 cate pharmacotherapy and may lead to adverse outcomes in patients.
69 Several groups have reported on estimates that DDI accounts for more
70 than 30% of all drug adverse reactions [8–10]. Furthermore, a recent
71 study on drugs withdrawn from the market showed that DDIs are one
72 of the leading contributing causes to drug failure [11]. Alongwith an in-
73 creasing frequency of polypharmacywe are currently experiencing [12],
74 these factors make DDIs a developing risk to public health. Even the in-
75 creasing use of therapeutic proteins (TP) requires assessment of TP-DDI
76 [13]. There are mainly two types of DDI of concern namely, pharmaco-
77 kinetic (PK) or pharmacodynamics (PD). PD-based DDI occurs when
78 the pharmacological effects of a drug are altered (enhanced or dimin-
79 ished) by the other drug due to competition at its therapeutic targets
80 or interfering with other cellular factors, such as related signaling path-
81 ways. PK-based DDI refers to drug interactions that influence the dispo-
82 sition of another drug in the body, e.g. its absorption, distribution,
83 metabolism, and elimination (ADME), causing an altered plasma con-
84 centration of the first drug that may lead to detrimental consequences
85 (such as toxicity). PK-based DDI is the major focus in this article.
86 Over the past 20 years in vitro approaches have been increasingly
87 used in both academia and industry to predict DDI [14,15]. A large num-
88 ber of studies have been conducted to identify and eliminate compounds
89 with DDI potential in the early stage of drug development (reviewed in
90 [14,15]). Additionally, the regulatory agencies of the United States and
91 European Union have both issued guidances to help companies evaluate
92 DDI potential of a new chemical entitywith known drugs [16–19]. Indus-
93 try and academics have alsowrittenwhite papers for addressing DDI [20,
94 21]. This focus has significantly advanced our understanding of PK-based
95 DDI at the molecular level, in particular about the involvement of drug
96 metabolizing enzymes and transporters, resulting in a large amount of
97 experimental data. Furthermore, postmarketing surveillance systems of
98 drugs and de-identified electronic health records of patients are now
99 morepublically accessible and represent a rich and fairly reliable resource
100 to identify clinically relevant DDI [22]. These databases specifically pro-
101 vide information about population-based responses to drug(s). Gathering
102 the experimental and population-based information together creates an
103 enormous amount of knowledge on DDI on many levels, e.g. in vitro,
104 in vivo, and in populo. The knowledge pyramid of DDI (shown in
105 Fig. 1A) indicates that the clinical relevance of DDI is improved as the
106 data levels move upwards, however the difficulty in acquisition is
107 dramatically increased as well. DDI may be uncovered in early drug
108 development or later on during postmarketing surveillance. Ideally the
109 earlier these DDIs are caught the better to address them. It is key to use
110 multiple approaches to estimate the likelihood of DDI e.g. for just a
111 chemical structure using its 2D sketch to provide an input for in silico ap-
112 proaches, or for synthetic compounds with little other activity data DDI
113 can be assessed using in vitro approaches. These methods could be ex-
114 tended all the way to a FDA-approved drug that have been marketed
115 for years but may be repurposed for a new indication, or coadministered
116 with a new drug for which DDI is unknown.
117 Over the past 15 years numerous reviews by several groups [23–26]
118 have described computational modeling and how such in silico
119 methods can be used for ADME/Tox predictions. These methods have
120 played an important role in various stages of drug discovery and devel-
121 opment [27–36]. In silico models have been constructed to predict DDI
122 and assist in decision-making since it is not feasible to test all possible
123 combinations of drug interactions experimentally. In addition some
124 methods are ideally suited to working with molecules as they are de-
125 signed. Three groups of in silico approaches have emerged as useful

126techniques to assess risk of interactions, and they can be applied at dif-
127ferent points of the life cycle of a molecule to predict unfavorable DDI
128(Fig. 1B). With an increasing knowledge of multiple mechanisms be-
129hind DDI, mechanistic models for drug interaction potential evaluation
130can be constructed. Hypothesis-driven in silico approaches assess DDI
131potential of compounds or drugs through their interaction profile with
132important proteins that participate in the DDI, such as cytochrome
133P450 enzymes [21] and transporters (e.g. P-glycoprotein). The second
134group of mechanistic models is built by physiologically based PK
135(PBPK) modeling that extrapolates in vitro PK data of drugs to in vivo
136risk of DDI. This method uses a mathematical estimation of how the
137plasma concentration–time course of a drug is altered by another
138drug. The increasing availability of clinical information about drug ef-
139fects fromdrug spontaneous reporting systems and electronic health re-
140cords has promoted the development of the third group of approaches
141to the problem of DDI. This is termed ‘informatics-driven’ methods,
142which make it possible to identify DDI with high clinical relevance.
143Both PK- and PD-based DDI can be discovered through this latter ap-
144proach. We shall briefly review the multiple computational methods
145and their applications in detecting DDI between existing drugs and
146novel ones. We shall also explore multiple factors that may complicate
147in silico predictions of DDI and discuss the potential risk of drug interac-
148tion with other substances, such as Traditional Chinese Medicines and
149nanoparticles.

1502. In silico modeling to predict DDI

151Traditionally healthcare professionals in the US rely on the package
152insert while in Europe the Summary of Product Characteristics (SPC) is
153useful to alert them about the occurrence of DDIs. However the package
154insert, SPC or electronic database containing this information clearly is
155not an exhaustive list of all the potential DDIs. The number of possible
156drug combinationswith the several thousands of approved drugs is enor-
157mous along with the number of DDIs. Therefore it is important to priori-
158tize a list of potential DDIs and opt for focused testing in vitro then in vivo
159or even clinical studies on them. Repositories of preliminary knowledge
160about DDI are therefore available from preclinical studies, pharmacologi-
161cal studies on drug PK, clinical trials and pharmacovigilance programs.
162Such databases are a prerequisite for the development of in silico model-
163ingmethods.While in the past suchDDI datawas limited, collation of the
164individual publications and package inserts brings us to the point where
165some DDIs are known for most new drugs as well as many that did not
166make it to the market. Computational methods represent techniques to
167recognize, predict and explain DDI in a high-throughput fashion and fur-
168ther refine testing. These approaches can also allow the design of candi-
169date compounds with improved PK properties [37]. When closely
170integratedwith laboratory experiments, in silicomodelingmay represent
171an efficient method to predict a DDI and understand the molecular basis
172of it [38].

1732.1. Hypothesis-driven in silico approaches

174A number of key components of ADME processes, such as drug me-
175tabolizing enzymes and transporters, have been widely characterized
176and modeled over the past twenty years. Many clinically relevant PK-
177based drug interactions have been attributed to modulation of functions
178of these proteins including CYP3A4, P-glycoprotein (P-gp), and organic
179anion transporting polypeptide 1B (OATP1B), etc. (Table 1).With the de-
180velopment of high-throughput screening, a large volume of data is now
181aggregated about pharmacological activities of drugs against these tar-
182gets and (for some) three-dimensional (3D) structural information is
183available [39]. This provides an experimental basis for computational
184modeling interactions between drug(s) and targets. Hypothesis-driven
185in silico models seek to predict at the specific protein level and under-
186stand the underlying mechanisms for previously recognized DDIs.
187Protein-specific mechanistic models can provide qualitative estimation
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