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a b s t r a c t

Using the cone theory and lattice structure, we discuss the existence of asymptotic
bifurcation points and the global bifurcation of nonlinear operators which are not assumed
to be cone mappings and may not be Frechet differentiable at points at infinity. As
an application, the structure of the set of solutions of the superlinear Sturm–Liouville
problems is investigated.
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1. Introduction

Let E be a Banach space with norm ‖x‖ and A : E → E a completely continuous operator. Obviously, R × E becomes a
Banach space with norm ‖(λ, x)‖ = (λ2

+ ‖x‖2)
1
2 . The closure of the set of nonzero solutions of the equation

x = λAx (1.1)
will be denoted by L, i.e.,

L = {(λ, x) ∈ R × E|x = λAx, x ≠ θ}.

In this paper, we shall study the existence of asymptotic bifurcation points and the global bifurcation of nonlinear
operators. The difference from [1] is that the operator A is not assumed to be a cone mapping and may not be Frechet
differentiable at points at infinity. Our results generalize and complement the corresponding results in [2–4].

The degree theory is an effective tool for investigating a lot of nonlinear problems; one could see [5–8] and the references
therein. On the other hand, the Nielsen fixed point theory has been applied to some nonlinear equations; see [9,10].
We discuss the global bifurcation by using the topological degree method for the lattice structure. As an application, we
investigate the structure of the set of solutions of the superlinear Sturm–Liouville problems.

We use the following lemma.

Lemma 1.1. Suppose that A : E → E is a completely continuous operator which is Frechet differentiable at θ and Aθ = θ .
Suppose that λ ∈ R, U is a bounded open set in [λ, +∞) × E (or (−∞, λ] × E), and

∂U ∩ L = ∅,

where ∂U is the boundary of U relative to [λ, +∞) × E (correspondingly, (−∞, λ] × E). Then we have:
(i) if (λ, θ) ∈ U, then deg(I − λA,U(λ), θ) ≡ 1 (mod 2), where U(λ) = U ∩ ({λ} × E);
(ii) if (λ, θ) ∉ U, then deg(I − λA,U(λ), θ) ≡ 0 (mod 2).
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Remark 1.1. The proof of Lemma 1.1 can be found in [11,12], or see [13]. The proof idea came from [4]. We give the proof
in Appendix A.

In order to prove the main conclusion of this paper, we need some results from point set topology.

Lemma 1.2 ([14]). Let M be a compact metric space and A and B be disjoint, closed subsets of M. Then either there exists a
closed, connected set C such that C ∩ A and C ∩ B are nonempty or there exist disjoint, closed subsets MA and MB of M such that
A ⊂ MA, B ⊂ MB, and M = MA ∪ MB.

LetM be a compact metric space and {Cn} a sequence of subsets ofM . Define
lim sup
n→∞

Cn = {x ∈ M | there exist a subsequence {nk} of {n} and xnk ∈ Cnk such that lim
k→∞

xnk = x}.

Clearly, lim supn→∞ Cn is a closed set ofM .
In papers [15,16], the author, Sun, proved the following lemma.

Lemma 1.3. Suppose that M is a compact metric space and (a, b) ⊂ (−∞, + ∞) (where a and b may be −∞ and +∞

respectively), and

a < · · · < αn < · · · < α2 < α1 < β1 < β2 < · · · < βn < · · · < b,
lim
n→∞

αn = a, lim
n→∞

βn = b.

Suppose that Σ = {Cn | n = 1, 2, · · ·} is a family of connected subsets of R × M, which satisfies the following conditions:
(1) for n = 1, 2, . . . ,

Cn ∩ ({αn} × M) ≠ ∅,

Cn ∩ ({βn} × M) ≠ ∅;

(2) for a < α < β < b,


∞

n=1 Cn
 

([α, β] × M) is a relatively compact set of R × M.
Then there exists a connected component C∗ of lim supn→∞ Cn such that

C∗
∩ ({λ} × M) ≠ ∅, ∀λ ∈ (a, b).

We need the following lemma which is a version of the lemma above; the proof is similar to that in [15,16]—see
Appendix B.

Lemma 1.4. Let E be a Banach space, and {Cn} a sequence of connected subsets of R × E satisfying:
(1) there exists λ̄ ∈ R such that


∞

n=1 Cn


∩ ({λ̄} × E) is a bounded set, and for any R > 0,


∞

n=1 Cn


∩ SR is a relatively
compact set of R × E, where SR = {(λ, x) ∈ R × E| ‖(λ, x)‖ < R};

(2) there exists {Rn} ⊂ R with

R1 < R2 < · · · < Rn < · · · , Rn → +∞(n → ∞),

and R1 > sup{‖(λ, x)‖ |(λ, x) ∈


∞

n=1 Cn

∩ ({λ̄} × E)} such that

Cn ∩ (∂SRn ∩ ((−∞, λ̄) × E)) ≠ ∅, n = 1, 2, . . . ,

Cn ∩ (∂SRn ∩ ((λ̄, +∞) × E)) ≠ ∅, n = 1, 2, . . . ,

where ∂SRn is the boundary of SRn in R × E.
Then there exists a connected component C of lim supn→∞ Cn such that for R > R1,

C ∩ (∂SR ∩ ((−∞, λ̄) × E)) ≠ ∅; C ∩ (∂SR ∩ ((λ̄, +∞) × E)) ≠ ∅. (1.2)

2. General results

Theorem 2.1. Suppose that E is a Banach space, A : E → E is a completely continuous operator which is Frechet differentiable
at θ and Aθ = θ . Suppose that there exists λ̄ > 0 such that

ind(I − λ̄A, ∞) ≡ 0(mod 2), (2.1)

i.e., for sufficiently large R > 0, the topological degree deg(I − λ̄A, BR, θ) ≡ 0 (mod 2), where BR = {x ∈ E| ‖x‖ < R}. Then L
possesses an unbounded connected component C ⊂ (0, +∞) × E, which satisfies:
(i) there exists an asymptotic bifurcation point λ∗ of A with λ∗

∈ [0, λ̄] such that C passes through (λ∗, ∞), i.e., for any
δ > 0, M > 0, there exists (λ, x) ∈ C such that |λ − λ∗

| < δ, ‖x‖ > M;
(ii) C ∩ ((0, λ̄) × E) is unbounded;
(iii) C ∩ ((λ̄, +∞) × E) is unbounded.



Download English Version:

https://daneshyari.com/en/article/840331

Download Persian Version:

https://daneshyari.com/article/840331

Daneshyari.com

https://daneshyari.com/en/article/840331
https://daneshyari.com/article/840331
https://daneshyari.com

