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a b s t r a c t

This paper is mainly concerned with the periodic Cauchy problem for a generalized
two-component µ-Hunter–Saxton system with analytic initial data. The analyticity of
its solutions is proved in both variables, globally in space and locally in time. The
obtained result can be also applied to its special cases—the classical integrable two-
component Hunter–Saxton system, the generalized µ-Hunter–Saxton equation and the
classical Hunter–Saxton equation.
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1. Introduction

In this paper we mainly consider the periodic Cauchy problem of the following two-component µ-Hunter–Saxton
system:

utxx = 2µ(u)ux − 2uxuxx − uuxxx + kρρx + γ1uxxx + γ2ρxx,
ρt = (ρu)x + γ2uxx + γ3ρx,
u(0, x) = u0(x),
ρ(0, x) = ρ0(x),

(1.1)

where t ∈ R, x ∈ T, T ≡ R/Z, µ(u) ≡


T u(t, x)dx, k = ±1 and −→γ ≡ (γ1, γ2, γ3) ∈ R3.
System (1.1) was recently studied in [1] when we replace t by −t and choose k = 1. The author proved that the

two-component µ-Hunter–Saxton equation (2-µ-HS) is a bi-Hamiltonian Euler equation and can also be viewed as a bi-
variational equation.

Forµ(u) = 0 and−→γ =
−→
0 , system (1.1) becomes the classical Hunter–Saxton system (HS-system). It arises in the short-

wave (or high-frequency) limit of the two-component Camassa–Holm system (2CH) [2,3] derived from the Green–Naghdi
equations, which are approximations to the governing equations for water waves. The main motivation for seeking and
studying such a system lies in capturing nonlinear phenomena such as wave-breaking and traveling waves which are not
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exhibited by small-amplitudemodels [4–6]. The HS-system is a particular case of the Gurevich–Zybin system describing the
dynamics in a model of non-dissipative dark matter (see [7] and the references therein). For ρ ≢ 0, peakon solutions of the
HS-system have been analyzed in [2]. Moreover, its Cauchy problem has been discussed in [8].

For ρ ≡ 0 and −→γ =
−→
0 , system (1.1) reduces to a generalized Hunter–Saxton equation (µ-HS) lying between the

Hunter–Saxton and Camassa–Holm equations, and which describes evolution of rotators in liquid crystals with an external
magnetic field and self-interaction [9]. The authors proved that it is not only an Euler equation on the diffeomorphism group
of the circle corresponding to a natural right-invariant Sobolev metric but also bi-Hamiltonian and admits both cusped and
smooth traveling wave solutions which are natural candidates for solitons. Furthermore, the term 2µ(u)ux has a strong
effect on well-posedness of its Cauchy problem in that it is responsible for µ-HS admitting blow-up solutions and global
solutions in time [9].

For ρ ≡ 0, −→γ =
−→
0 and µ(u) = 0, system (1.1) becomes the classical Hunter–Saxton equation (HS) [10] modeling the

propagation of weakly nonlinear orientation waves in a massive nematic liquid crystal. In the Hunter–Saxton equation [10],
x is the space variable in a reference framemovingwith the linearizedwave velocity, t is a slow-time variable and u(t, x) is a
measure of the average orientation of themedium locally around x at time t . More precisely, the orientation of themolecules
is described by the field of unit vectors (cos u(t, x), sin u(t, x)) [11]. The single-component model also arises in a different
physical context as the high-frequency limit [12,13] of the Camassa–Holmequation for shallowwaterwaves [14,15] and a re-
expression of the geodesic flow on the diffeomorphism group of the circle [16] with a bi-Hamiltonian structure [17] which
is completely integrable [18]. The Hunter–Saxton equation also has a bi-Hamiltonian structure [15,19] and is completely
integrable [13,20]. The initial value problem for the Hunter–Saxton equation on the line (nonperiodic case) was studied
by Hunter and Saxton in [10]. Using the method of characteristics, they showed that smooth solutions exist locally and
break down in finite time; see [10]. The occurrence of blow-up can be interpreted physically as the phenomenon by which
waves that propagate away from the perturbation knock the director field out of its unperturbed state [10]. The initial value
problem for theHunter–Saxton equation on the circleTwasdiscussed in [11]. The author proved the local existence of strong
solutions to the periodic Hunter–Saxton equation, showed that all strong solutions except space-independent solutions
blow up in finite time by using Kato semigroup method [21]. Moreover, the behavior of the solutions exhibits different
features.

The analyticity of solutions to Euler equations of hydrodynamics has been studied extensively. (It was initiated
by [22,23] and later further developed in [24–28] and in the papers of [29,30] where the approach is based on a contraction
type argument in a suitable scale of Banach spaces.) In particular, the analyticity of the Cauchy problem for two-component
shallow water systems has been proved in [31]. However, in this paper we will prove the analyticity of solutions to system
(1.1) in both variables, with x on the circle T and t in a neighborhood of zero, provided that the initial data is analytic on T.
Note that the classical Cauchy–Kowalevski theorem does not apply to (1.1) since the initial line t = 0 is characteristic. Thus
the result above can be viewed as an extended Cauchy–Kowalevski theorem for the nonlinear case (1.1). More precisely, we
have the following main theorem.

Theorem 1.1. Let

u0
ρ0


be real analytic on T. There exists an ε > 0 and a unique solution


u
ρ


of the Cauchy problem (1.1) that

is analytic on (−ε, ε) × T.

2. Proof of our main theorem

First, we will rewrite the initial value problem (1.1) into a nonlocal form. Integrating both sides of the first equation of
(1.1) w.r.t. x, we obtain

utx = 2µ(u)u − (uux)x +
1
2
u2
x +

k
2
ρ2

+ γ1uxx + γ2ρx + a(t),

where a(·) : R −→ R is an arbitrary continuous function, denoted by a(t) ∈ C(R).
Integrating once more in x, we have

ut = γ1ux − uux + γ2ρ + ∂−1
x


2µ(u)u +

1
2
u2
x +

k
2
ρ2

+ a(t)


+ b(t).

That is

∂tu = ∂x


γ1u −

1
2
u2


+ ∂−1
x


2µ(u)u +

1
2
(∂xu)2 +

k
2
ρ2

+ a(t)


+ γ2ρ + b(t),

where ∂−1
x f (x) ≡

 x
0 f (y)dy and b(t) ∈ C(R).

On the other hand, the second equation of (1.1) is equivalent to the following equation:

∂tρ = ∂x(ρu + γ2(∂xu) + γ3ρ).



Download English Version:

https://daneshyari.com/en/article/840352

Download Persian Version:

https://daneshyari.com/article/840352

Daneshyari.com

https://daneshyari.com/en/article/840352
https://daneshyari.com/article/840352
https://daneshyari.com

