Contents lists available at [SciVerse ScienceDirect](http://www.elsevier.com/locate/na)

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Exponential problem on a compact Riemannian manifold without boundary

Liang Zhao[∗](#page-0-0)

School of Mathematical Sciences, Beijing Normal University, Beijing 100875, PR China Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, PR China

ARTICLE INFO

Article history: Received 25 October 2010 Accepted 21 August 2011 Communicated by Ravi Agarwal

MSC: 58J05 58E30 35J60 35B33 35J20

Keywords: Trudinger–Moser inequality Adams–Fontana inequality Exponential growth

a b s t r a c t

Let (*M*, *g*) be an *n*-dimensional compact Riemannian manifold without boundary. A Trudinger–Moser-type inequality says that

$$
\sup_{\|u\|_{W^{1,n}}\leq 1}\int_M e^{\alpha_n|u|^{\frac{n}{n-1}}}dv_g<\infty,
$$

where $||u||_{W^{1,n}}$ is the usual Sobolev norm of $u \in W^{1,n}(M)$, $\alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$, and ω_{n-1} is the area of the unit sphere \mathbb{S}^{n-1} . Using this inequality, when $\varepsilon > 0$ is small enough, we establish sufficient conditions under which the quasilinear equation

$$
-\Delta_n u + |u|^{n-2}u = f(x, u) + \varepsilon h(x)
$$

has at least two nontrivial weak solutions in $W^{1,n}(M)$, where $-\Delta_n u = -\text{div}_g(|\nabla u|^{n-2}\nabla u)$, *f*(*x*, *u*) behaves like $e^{\gamma |u| \frac{n}{n-1}}$ as $|u| \to \infty$ for some $\gamma > 0$, and $h \not\equiv 0$ belongs to the dual space of $W^{1,n}(M)$.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n ($n \geq 2$) without boundary and $W^{1,n}(M)$ be the usual Sobolev space. Here $W^{1,n}(M)$ is the completion of $C^{\infty}(M)$ under the norm

$$
||u||_{W^{1,n}} = \left(\int_M (|\nabla u|^n + |u|^n) dv_g\right)^{\frac{1}{n}},\tag{1.1}
$$

where $∇$ is the gradient operator and dv_g is the volume element of (*M*, *g*). A special case of the Fontana inequalities (see [\[1\]](#page--1-0)) says that

$$
\sup_{\int_M u dv_g = 0, \, \| \nabla u \|_{L^{\bar{n}}} \le 1} \int_M e^{\alpha_n |u|^{\frac{n}{n-1}}} dv_g < \infty,\tag{1.2}
$$

where $\|\cdot\|_{L^n}$ denotes the $L^n(M)$ norm, $\alpha_n = n\omega_{n-1}^{\frac{1}{n-1}}$, and ω_{n-1} is the area of the unit sphere \mathbb{S}^{n-1} . If α_n is replaced by any larger number, the integrals in [\(1.2\)](#page-0-1) are still finite, but cannot be bounded uniformly by any constant. Inequality [\(1.2\)](#page-0-1) is a

[∗] Correspondence to: School of Mathematical Sciences, Beijing Normal University, Beijing 100875, PR China. Tel.: +86 13141282291; fax: +86 10 58808202.

E-mail address: [liangzhao@bnu.edu.cn.](mailto:liangzhao@bnu.edu.cn)

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter © 2011 Elsevier Ltd. All rights reserved. [doi:10.1016/j.na.2011.08.043](http://dx.doi.org/10.1016/j.na.2011.08.043)

manifold case of the well-known Trudinger–Moser inequalities (see [\[2–5\]](#page--1-1)). In [\[6\]](#page--1-2), replacing the hypothesis $\int_M u dv_g = 0$ and $\int_M |\nabla u|^n dv_g \leq 1$ by $\int_M (|\nabla u|^n + |u|^n) dv_g \leq 1$, do Ó and Yang proved that [\(1.2\)](#page-0-1) is still valid. Namely, they proved the following theorem.

Theorem A (*[\[6\]](#page--1-2), Theorem 1.2*)**.** *Let* (*M*, *g*) *be a compact Riemannian manifold of dimension n without boundary. Then*

$$
\sup_{u \in W^{1,n}(M), \|u\|_{W^{1,n}} \le 1} \int_M e^{\alpha_n |u|^{\frac{n}{n-1}}} dv_g < \infty,\tag{1.3}
$$

 m here $\alpha_n=n\omega_{n-1}^{\frac{1}{n-1}}$ and ω_{n-1} is the area of the unit sphere \mathbb{S}^{n-1} . Furthermore, this inequality is sharp: when α_n is replaced by any *larger number, the integrals in* [\(1.3\)](#page-1-0) *are still finite, but the supremum is infinity.*

An elementary proof of [Theorem A](#page-1-1) is based on [\(1.2\)](#page-0-1) and the Young inequality (see [\[6,](#page--1-2)[7\]](#page--1-3)). A similar idea together with a rearrangement argument can be applied to the Trudinger–Moser inequality in the whole space \mathbb{R}^n (see [\[8\]](#page--1-4)). Another proof is based on the blow-up analysis, and is thus much more complicated (see [\[9\]](#page--1-5)). The modified Fontana inequality [\(1.3\)](#page-1-0) will be more natural when we consider related partial differential equations on manifolds. In addition to the modified Fontana inequality [\(1.3\),](#page-1-0) the following manifold version of Lion's inequality (see [\[10\]](#page--1-6)) is another key ingredient in our argument.

Theorem B. Let $\{u_k\}$ be a sequence in $W^{1,n}(M)$ such that $\|u_k\|_{W^{1,n}} = 1$, $u_k \rightharpoonup u$ in $W^{1,n}(M)$, $u_k \rightharpoonup u$ in $L^n(M)$, and $\nabla u_k(x) \to \nabla u(x)$ for almost every $x \in M$. Then, for any $p < (1 - ||u||_{W^{1,n}}^n)^{-\frac{1}{n-1}}$,

$$
\sup_{k}\int_{M}e^{p\alpha_{n}|u_{k}|^{\frac{n}{n-1}}}dv_{g}<+\infty.
$$

The proof of [Theorem B](#page-1-2) is based on the Brézis–Lieb lemma (see [\[11\]](#page--1-7)). Such kinds of theorem are very important when studying exponential problems (see [\[12,](#page--1-8)[13](#page--1-9)[,7\]](#page--1-3)).

As applications of the two theorems above, we study the existence result of the following quasilinear equation:

$$
-\Delta_n u + |u|^{n-2}u = f(x, u) + \varepsilon h(x) \quad \text{in } M,
$$
\n(1.4)

where $-\Delta_n u = -\text{div}_g(|\nabla u|^{n-2}\nabla u)$; the nonlinearity $f(x, u)$ has the maximal growth on *u* which allows us to treat problem [\(1.4\)](#page-1-3) variationally in the Sobolev space $W^{1,n}(M)$. For the Euclidean case, similar problems have been studied extensively (see [\[14–20\]](#page--1-10) and the references therein). To present our existence result, we assume that*f* satisfies the following hypotheses.

 (H_1) $f : M \times \mathbb{R} \to \mathbb{R}$ is continuous and there exist constants $C > 0$ and $\beta > 0$ such that

$$
|f(x,s)| \leq Ce^{\beta|s|^{\frac{n}{n-1}}}.
$$

(H₂) There exist constants $R > 0$ and $A > 0$ such that, for all $s > R$ and all $x \in M$,

$$
0 < F(x, s) = \int_0^s f(x, t) dt \leq Af(x, s).
$$

 $(f(x, s) ≥ 0$ for all $(x, s) ∈ M × [0, ∞)$ and $f(x, 0) = 0$ for all $x ∈ M$.

 (H_4) $\limsup_{s\to 0^+} \frac{nF(x,s)}{s^n} < 1$ uniformly for $x \in M$.

(H₅) There exists $\alpha_0 > 0$ such that the following limit holds uniformly for all $x \in M$:

$$
\lim_{s\to+\infty}sf(x,s)e^{-\alpha_0s^{\frac{n}{n-1}}} = +\infty.
$$

Our main result is the following.

Theorem 1.1. *Assume* (H₁) $-(H_5)$ *. Then there exists* $\varepsilon_1 > 0$ *such that, for each* $0 < \varepsilon < \varepsilon_1$ *, Eq.* [\(1.4\)](#page-1-3) *has at least two nontrivial solutions.*

Solutions to Eq. [\(1.4\)](#page-1-3) are critical points of the functional

$$
J_{\varepsilon}(u) := \frac{1}{n} \int_{M} (|\nabla u|^{n} + |u|^{n}) dv_{g} - \int_{M} F(x, u) dv_{g} - \int_{M} \varepsilon h(x) u dv_{g},
$$

where $F(x, s) = \int_0^s f(x, t) dt$ for all $x \in M$ and $s \in \mathbb{R}$. In view of the structure of J_ε , particularly its first term *f_M* (|∇*u*|^{*n*} + |*u*|^{*n*})*dv_g*, it is reasonable to use [Theorem A](#page-1-1) instead of Fontana's original inequality [\(1.2\)](#page-0-1) to study the compactness of the Palais–Smale sequence of J_{ε} . The existence of the second solution of [\(1.4\)](#page-1-3) is based on the mountain-pass theory. A similar idea has been used by de Figueiredo et al. (see [\[16\]](#page--1-11)) to establish the same result in the case when (*M*, *g*) is replaced by any smooth bounded domain in \mathbb{R}^2 .

The remaining part of this paper is organized as follows. In Section [2,](#page--1-12) we prove [Theorem B](#page-1-2) and study the geometric and variational structures of the functional *J*ε. Then we prove [Theorem 1.1](#page-1-4) in Section [3.](#page--1-13)

Download English Version:

<https://daneshyari.com/en/article/840367>

Download Persian Version:

<https://daneshyari.com/article/840367>

[Daneshyari.com](https://daneshyari.com)