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a b s t r a c t

Let (M, g) be an n-dimensional compact Riemannian manifold without boundary. A
Trudinger–Moser-type inequality says that

sup
‖u‖W1,n≤1

∫
M
eαn|u|

n
n−1 dvg < ∞,

where ‖u‖W1,n is the usual Sobolev normof u ∈ W 1,n(M),αn = nω
1

n−1
n−1 , andωn−1 is the area

of the unit sphere Sn−1. Using this inequality, when ε > 0 is small enough, we establish
sufficient conditions under which the quasilinear equation

−∆nu + |u|n−2u = f (x, u) + εh(x)

has at least two nontrivial weak solutions inW 1,n(M), where−∆nu = −divg (|∇u|n−2
∇u),

f (x, u) behaves like eγ |u|
n

n−1 as |u| → ∞ for some γ > 0, and h ≢ 0 belongs to the dual
space ofW 1,n(M).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction and main results

Let (M, g) be a compact Riemannian manifold of dimension n (n ≥ 2) without boundary and W 1,n(M) be the usual
Sobolev space. HereW 1,n(M) is the completion of C∞(M) under the norm

‖u‖W1,n =

∫
M
(|∇u|n + |u|n)dvg

 1
n

, (1.1)

where∇ is the gradient operator and dvg is the volume element of (M, g). A special case of the Fontana inequalities (see [1])
says that

sup
M udvg=0, ‖∇u‖Ln≤1

∫
M
eαn|u|

n
n−1 dvg < ∞, (1.2)

where ‖·‖Ln denotes the Ln(M) norm, αn = nω
1

n−1
n−1 , and ωn−1 is the area of the unit sphere Sn−1. If αn is replaced by any

larger number, the integrals in (1.2) are still finite, but cannot be bounded uniformly by any constant. Inequality (1.2) is a
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manifold case of the well-known Trudinger–Moser inequalities (see [2–5]). In [6], replacing the hypothesis

M udvg = 0

and

M |∇u|ndvg ≤ 1 by


M(|∇u|n + |u|n)dvg ≤ 1, do Ó and Yang proved that (1.2) is still valid. Namely, they proved the

following theorem.

Theorem A ([6], Theorem 1.2). Let (M, g) be a compact Riemannian manifold of dimension n without boundary. Then

sup
u∈W1,n(M), ‖u‖W1,n≤1

∫
M
eαn|u|

n
n−1 dvg < ∞, (1.3)

where αn = nω
1

n−1
n−1 andωn−1 is the area of the unit sphere Sn−1. Furthermore, this inequality is sharp: when αn is replaced by any

larger number, the integrals in (1.3) are still finite, but the supremum is infinity.

An elementary proof of Theorem A is based on (1.2) and the Young inequality (see [6,7]). A similar idea together with a
rearrangement argument can be applied to the Trudinger–Moser inequality in the whole space Rn (see [8]). Another proof
is based on the blow-up analysis, and is thus much more complicated (see [9]). The modified Fontana inequality (1.3) will
be more natural when we consider related partial differential equations on manifolds. In addition to the modified Fontana
inequality (1.3), the following manifold version of Lion’s inequality (see [10]) is another key ingredient in our argument.

Theorem B. Let {uk} be a sequence in W 1,n(M) such that ‖uk‖W1,n = 1, uk ⇀ u in W 1,n(M), uk → u in Ln(M), and
∇uk(x) → ∇u(x) for almost every x ∈ M. Then, for any p < (1 − ‖u‖n

W1,n)
−

1
n−1 ,

sup
k

∫
M
epαn|uk|

n
n−1 dvg < +∞.

The proof of Theorem B is based on the Brézis–Lieb lemma (see [11]). Such kinds of theorem are very important when
studying exponential problems (see [12,13,7]).

As applications of the two theorems above, we study the existence result of the following quasilinear equation:

− ∆nu + |u|n−2u = f (x, u) + εh(x) in M, (1.4)
where −∆nu = −divg(|∇u|n−2

∇u); the nonlinearity f (x, u) has the maximal growth on u which allows us to treat
problem (1.4) variationally in the Sobolev space W 1,n(M). For the Euclidean case, similar problems have been studied
extensively (see [14–20] and the references therein). To present our existence result, we assume that f satisfies the following
hypotheses.
(H1) f : M × R → R is continuous and there exist constants C > 0 and β > 0 such that

|f (x, s)| ≤ Ceβ|s|
n

n−1
.

(H2) There exist constants R > 0 and A > 0 such that, for all s ≥ R and all x ∈ M ,

0 < F(x, s) =

∫ s

0
f (x, t)dt ≤ Af (x, s).

(H3) f (x, s) ≥ 0 for all (x, s) ∈ M × [0, ∞) and f (x, 0) = 0 for all x ∈ M .
(H4) lim sups→0+

nF(x,s)
sn < 1 uniformly for x ∈ M .

(H5) There exists α0 > 0 such that the following limit holds uniformly for all x ∈ M:

lim
s→+∞

sf (x, s)e−α0s
n

n−1
= +∞.

Our main result is the following.

Theorem 1.1. Assume (H1) –(H5). Then there exists ε1 > 0 such that, for each 0 < ε < ε1, Eq. (1.4) has at least two nontrivial
solutions.

Solutions to Eq. (1.4) are critical points of the functional

Jε(u) :=
1
n

∫
M
(|∇u|n + |u|n)dvg −

∫
M
F(x, u)dvg −

∫
M

εh(x)udvg ,

where F(x, s) =
 s
0 f (x, t)dt for all x ∈ M and s ∈ R. In view of the structure of Jε , particularly its first term

M(|∇u|n+|u|n)dvg , it is reasonable to use TheoremA instead of Fontana’s original inequality (1.2) to study the compactness
of the Palais–Smale sequence of Jε . The existence of the second solution of (1.4) is based on the mountain-pass theory. A
similar idea has been used by de Figueiredo et al. (see [16]) to establish the same result in the case when (M, g) is replaced
by any smooth bounded domain in R2.

The remaining part of this paper is organized as follows. In Section 2, we prove Theorem B and study the geometric and
variational structures of the functional Jε . Then we prove Theorem 1.1 in Section 3.
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