

Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

Solution profiles beyond quenching for a radially symmetric multi-dimensional parabolic problem

C.Y. Chan a,*, R. Boonklurb b

ARTICLE INFO

Article history: Received 8 September 2011 Accepted 30 July 2012 Communicated by Enzo Mitidieri

MSC: 35K60

35K57

35K20

35B35

Keywords:
Beyond quenching
Multi-dimensional parabolic quenching
Weak solution

ABSTRACT

Let $T \le \infty$, R > 0, $\Omega = (0, R) \times (0, T)$, χ {S} be the characteristic function of the set S. This article studies the following parabolic problem:

$$r^{N-1}u_t - (r^{N-1}u_r)_r = r^{N-1}f(u)\chi(\{u < c\})$$
 in Ω ,
 $u(r, 0) = 0$ on $[0, R]$, $u_r(0, t) = 0 = u(R, t)$ for $0 < t < T$,

where N is a positive integer, f is a given twice continuously differentiable function on [0,c) for some constant c with f(0)>0, f'>0, $f''\geq0$, and $\lim_{u\to c^-}f(u)=\infty$. It is shown that under some additional conditions on f, the problem has a weak solution, and all weak solutions of the problem tend to a unique steady-state (nonclassical) solution U(r) as t tends to infinity. Furthermore, increasing the length R increases the interval where $U(r)\equiv c$ by the same amount.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let $x = (x_1, x_2, x_3, \dots, x_N)$ be a point in the N-dimensional Euclidean space \mathbb{R}^N , $Hu = u_t - \Delta u$, $D = \{x : |x| < R\}$ for some positive constant R, ∂D be its boundary, \bar{D} be its closure, $T \le \infty$, and

$$\chi\left(S\right) = \begin{cases} 1 & \text{if } u \in S, \\ 0 & \text{if } u \notin S, \end{cases}$$

be the characteristic function of the set *S*. Our main purpose here is to study what happens beyond quenching through the radial solutions of the following problem:

$$Hu = f(u) \chi (\{u < c\}) \quad \text{in } D \times (0, T), u(x, 0) = 0 \quad \text{on } \bar{D}, \quad u(x, t) = 0 \quad \text{for } x \in \partial D, 0 < t < T,$$
(1.1)

where f(u) is twice continuously differentiable on [0, c) for some constant c such that f(0) > 0, f' > 0, $f'' \geq 0$ $\lim_{u \to c^-} f(u) = \infty$, $\int_0^c f(u) du = K_0$ for some positive constant K_0 , and for some positive constants K_1 , K_2 and K_3 ,

$$f'(u)\left(\frac{c-u}{f(u)}\right)^2 \le K_1,\tag{1.2}$$

$$\int_{u}^{c} f(s) ds \le \min \{ K_{2}(c-u) f(u), K_{3}(c-u)^{\gamma} \},$$
(1.3)

where γ is a constant between 0 and 2.

^a Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010, USA

^b Department of Mathematics and Computer Science, Chulalongkorn University, Bangkok, 10330, Thailand

^{*} Corresponding author. Tel.: +1 337 482 5288; fax: +1 337 482 5346.

E-mail addresses: chan@louisiana.edu (C.Y. Chan), ratinan.b@chula.ac.th (R. Boonklurb).

For any constant $\epsilon > 0$, let

$$f_{\epsilon}(u) = f(u) \frac{c - u}{\epsilon f(u) + c - u}.$$

Then, $\lim_{\epsilon \to 0} f_{\epsilon}(u) = f(u) \chi(\{u < c\})$, and $f_{\epsilon}(u) < f(u)$. We have

$$\begin{split} f_{\epsilon}'\left(u\right) &= \frac{-\epsilon f^{2}\left(u\right) + (c-u)^{2} f'\left(u\right)}{\left(\epsilon f\left(u\right) + c - u\right)^{2}} \leq \frac{(c-u)^{2} f'\left(u\right)}{\left(\epsilon f\left(u\right) + c - u\right)^{2}} \\ &\leq \frac{1}{\epsilon^{2}} f'\left(u\right) \left(\frac{c-u}{f\left(u\right)}\right)^{2}. \end{split}$$

Using (1.2), we obtain $f'_{\epsilon}(u) \leq K_1/\epsilon^2$. Let us consider the regularized problem,

$$Hu^{\epsilon} = f_{\epsilon} (u^{\epsilon}) \quad \text{in } D \times (0, T) ,$$

$$u^{\epsilon} (x, 0) = 0 \quad \text{on } \bar{D}, \qquad u^{\epsilon} (x, t) = 0 \quad \text{for } x \in \partial D, 0 < t < T$$

$$(1.4)$$

Since

$$H0 = 0 \le f_{\epsilon}(0)$$
 in $D \times (0, T)$, $u^{\epsilon}(x, 0) = 0$ on \overline{D} , $u^{\epsilon}(x, t) = 0$ for $x \in \partial D$, $0 < t < T$,

it follows that 0 is a lower solution of the problem (1.4). Because

$$f_{\epsilon}(c) = \lim_{u^{\epsilon} \to c^{-}} f_{\epsilon}(u^{\epsilon}) = \frac{\lim_{u^{\epsilon} \to c^{-}} (c - u^{\epsilon})}{\epsilon + \left(\lim_{u^{\epsilon} \to c^{-}} (c - u^{\epsilon})\right) \left(\lim_{u^{\epsilon} \to c^{-}} \frac{1}{f(u^{\epsilon})}\right)} = 0,$$

we have

$$Hc = 0 = f_{\epsilon}(c) \quad \text{in } D \times (0, T),$$

 $c > u^{\epsilon}(x, 0) = 0 \quad \text{on } \bar{D}, \qquad c > u^{\epsilon}(x, t) = 0 \quad \text{for } x \in \partial D, 0 < t < T.$

Thus, *c* is an upper solution.

The following existence result follows from Theorem 4.2.2 of Ladde et al. [1, p. 143].

Lemma 1.1. The problem (1.4) has a solution $u^{\epsilon} \in C^{2+\alpha,1+\alpha/2}(\overline{D\times(0,T)})$, where $0<\alpha<1$.

A proof similar to that of Lemma 1 of Chan and Kaper [2] gives the following result.

Lemma 1.2. The problem (1.4) has at most one solution. In $D \times (0, T)$, $0 < u^{\epsilon} < c$, and u^{ϵ} is a strictly increasing function of t. Let u denote $\lim_{\epsilon \to 0} u^{\epsilon}$ if the limit exists.

Lemma 1.3. If $0 < \epsilon_1 < \epsilon_2$, then $u^{\epsilon_1} > u^{\epsilon_2}$ in $D \times (0, T)$. Furthermore, u(x, t) is continuous on $\overline{D \times (0, T)}$.

Proof. The proof of u^{ϵ} being a strictly decreasing function of ϵ is similar to that of Lemma 3 of Chan and Kong [3]. Since $0 < u^{\epsilon} < c$ in $D \times (0, T)$, and $u^{\epsilon} \in C^{2,1}(\overline{D} \times (0, T))$ is strictly increasing as ϵ decreases, it follows from the Dini Theorem (cf. Stromberg [4, p. 143]) that u^{ϵ} converges uniformly on $\overline{D} \times (0, T)$, and hence, u(x, t) is continuous on $\overline{D} \times (0, T)$.

Theorem 1.1. In $\{u < c\} \cap (D \times (0, T))$, the limit u(x, t) satisfies Hu = f(u) in the classical sense.

Proof. By Lemma 1.1, the problem (1.4) has a solution $u^{\epsilon} \in C^{2+\alpha,1+\alpha/2}\left(\overline{D\times(0,T)}\right)$. For any $(x_0,t_0)\in\{(x,t):u(x,t)< c\}\cap(D\times(0,T))$, we have $u(x_0,t_0)< c$. From the proof of Lemma 1.3, u^{ϵ} converges uniformly to u as ϵ decreases. There exists a constant m depending on $u(x_0,t_0)$ and not on ϵ such that $0< u^{\epsilon} \leq m < c$ in some neighborhood Σ of (x_0,t_0) . Since for $u\leq m$,

$$|f - f_{\epsilon}| = f(u) \left(1 - \frac{c - u}{\epsilon f(u) + c - u} \right) = \frac{\epsilon f^{2}(u)}{\epsilon f(u) + c - u}$$

$$\leq \frac{\epsilon f^{2}(m)}{\epsilon f(u) + c - u} \leq \frac{\epsilon f^{2}(m)}{c - u} \leq \frac{\epsilon f^{2}(m)}{c - m},$$

we have that $f_{\epsilon} \to f$ uniformly as $\epsilon \to 0$ on $\{(x,t): u(x,t) \le m\}$. Let p be a constant such that $p > (N+2)/(2-\alpha)$. Because $u^{\epsilon}(x,t) \le m$ for $(x,t) \in \Sigma$, we have $\|u^{\epsilon}\|_{L^p(\Sigma)} = \left(\int_{\Sigma} (u^{\epsilon})^p \, dx dt\right)^{1/p} \le m \left(\int_{\Sigma} dx dt\right)^{1/p} \le k_1$ for some positive constant k_1 . Since $f_{\epsilon}(u^{\epsilon}) < f(u^{\epsilon})$ for any $\epsilon > 0$, and f is increasing, we have

$$||f_{\epsilon}(u^{\epsilon})||_{L^{p}(\Sigma)} \leq ||f(u^{\epsilon})||_{L^{p}(\Sigma)} \leq ||f(m)||_{L^{p}(\Sigma)}$$
.

Download English Version:

https://daneshyari.com/en/article/840374

Download Persian Version:

https://daneshyari.com/article/840374

<u>Daneshyari.com</u>