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a b s t r a c t

Let T ≤ ∞, R > 0, Ω = (0, R) × (0, T ), χ {S} be the characteristic function of the set S.
This article studies the following parabolic problem:

rN−1ut −

rN−1ur


r = rN−1f (u) χ ({u < c}) in Ω,

u (r, 0) = 0 on [0, R] , ur (0, t) = 0 = u (R, t) for 0 < t < T ,

where N is a positive integer, f is a given twice continuously differentiable function on
[0, c) for some constant c with f (0) > 0, f ′ > 0, f ′′

≥ 0, and limu→c− f (u) = ∞. It is
shown that under some additional conditions on f , the problemhas aweak solution, and all
weak solutions of the problem tend to a unique steady-state (nonclassical) solution U (r)
as t tends to infinity. Furthermore, increasing the length R increases the interval where
U (r) ≡ c by the same amount.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Let x = (x1, x2, x3, . . . , xN) be a point in the N-dimensional Euclidean space RN , Hu = ut − ∆u, D = {x : |x| < R} for
some positive constant R, ∂D be its boundary, D̄ be its closure, T ≤ ∞, and

χ (S) =


1 if u ∈ S,
0 if u ∉ S,

be the characteristic function of the set S. Our main purpose here is to study what happens beyond quenching through the
radial solutions of the following problem:

Hu = f (u) χ ({u < c}) in D × (0, T ) ,

u (x, 0) = 0 on D̄, u (x, t) = 0 for x ∈ ∂D, 0 < t < T ,


(1.1)

where f (u) is twice continuously differentiable on [0, c) for some constant c such that f (0) > 0, f ′ > 0, f ′′
≥ 0,

limu→c− f (u) = ∞,
 c
0 f (u) du = K0 for some positive constant K0, and for some positive constants K1, K2 and K3,

f ′ (u)

c − u
f (u)

2

≤ K1, (1.2) c

u
f (s) ds ≤ min {K2 (c − u) f (u) , K3 (c − u)γ } , (1.3)

where γ is a constant between 0 and 2.
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For any constant ϵ > 0, let

fϵ (u) = f (u)
c − u

ϵf (u) + c − u
.

Then, limϵ→0 fϵ (u) = f (u) χ ({u < c}), and fϵ (u) < f (u). We have

f ′

ϵ (u) =
−ϵf 2 (u) + (c − u)2 f ′ (u)

(ϵf (u) + c − u)2
≤

(c − u)2 f ′ (u)
(ϵf (u) + c − u)2

≤
1
ϵ2

f ′ (u)

c − u
f (u)

2

.

Using (1.2), we obtain f ′
ϵ (u) ≤ K1/ϵ

2. Let us consider the regularized problem,

Huϵ
= fϵ (uϵ) in D × (0, T ) ,

uϵ (x, 0) = 0 on D̄, uϵ (x, t) = 0 for x ∈ ∂D, 0 < t < T


. (1.4)

Since

H0 = 0 ≤ fϵ (0) in D × (0, T ) , uϵ (x, 0) = 0 on D̄, uϵ (x, t) = 0 for x ∈ ∂D, 0 < t < T ,

it follows that 0 is a lower solution of the problem (1.4). Because

fϵ (c) = lim
uϵ→c−

fϵ (uϵ) =

lim
uϵ→c−

(c − uϵ)

ϵ +


lim

uϵ→c−
(c − uϵ)


lim

uϵ→c−
1

f (uϵ )

 = 0,

we have

Hc = 0 = fϵ (c) in D × (0, T ) ,

c ≥ uϵ (x, 0) = 0 on D̄, c ≥ uϵ (x, t) = 0 for x ∈ ∂D, 0 < t < T .

Thus, c is an upper solution.
The following existence result follows from Theorem 4.2.2 of Ladde et al. [1, p. 143].

Lemma 1.1. The problem (1.4) has a solution uϵ
∈ C2+α,1+α/2


D × (0, T )


, where 0 < α < 1.

A proof similar to that of Lemma 1 of Chan and Kaper [2] gives the following result.

Lemma 1.2. The problem (1.4) has at most one solution. In D × (0, T ), 0 < uϵ < c, and uϵ is a strictly increasing function of t.

Let u denote limϵ→0 uϵ if the limit exists.

Lemma 1.3. If 0 < ϵ1 < ϵ2, then uϵ1 > uϵ2 in D × (0, T ). Furthermore, u (x, t) is continuous on D × (0, T ).

Proof. The proof of uϵ being a strictly decreasing function of ϵ is similar to that of Lemma 3 of Chan and Kong [3]. Since
0 < uϵ < c in D × (0, T ), and uϵ

∈ C2,1

D × (0, T )


is strictly increasing as ϵ decreases, it follows from the Dini Theorem

(cf. Stromberg [4, p. 143]) that uϵ converges uniformly on D × (0, T ), and hence, u (x, t) is continuous on D × (0, T ). �

Theorem 1.1. In {u < c} ∩ (D × (0, T )), the limit u (x, t) satisfies Hu = f (u) in the classical sense.

Proof. By Lemma1.1, the problem (1.4) has a solutionuϵ
∈ C2+α,1+α/2


D × (0, T )


. For any (x0, t0) ∈ {(x, t) : u (x, t) < c}∩

(D × (0, T )), we have u (x0, t0) < c. From the proof of Lemma 1.3, uϵ converges uniformly to u as ϵ decreases. There exists
a constant m depending on u (x0, t0) and not on ϵ such that 0 < uϵ

≤ m < c in some neighborhood Σ of (x0, t0). Since for
u ≤ m,

|f − fϵ | = f (u)

1 −

c − u
ϵf (u) + c − u


=

ϵf 2 (u)
ϵf (u) + c − u

≤
ϵf 2 (m)

ϵf (u) + c − u
≤

ϵf 2 (m)

c − u
≤

ϵf 2 (m)

c − m
,

we have that fϵ → f uniformly as ϵ → 0 on {(x, t) : u (x, t) ≤ m}. Let p be a constant such that p > (N + 2) / (2 − α).
Because uϵ (x, t) ≤ m for (x, t) ∈ Σ , we have ∥uϵ∥Lp(Σ) =


Σ

(uϵ)p dxdt
1/p

≤ m


Σ
dxdt

1/p
≤ k1 for some positive

constant k1. Since fϵ (uϵ) < f (uϵ) for any ϵ > 0, and f is increasing, we have

∥fϵ (uϵ)∥Lp(Σ) ≤ ∥f (uϵ)∥Lp(Σ) ≤ ∥f (m)∥Lp(Σ) .



Download English Version:

https://daneshyari.com/en/article/840374

Download Persian Version:

https://daneshyari.com/article/840374

Daneshyari.com

https://daneshyari.com/en/article/840374
https://daneshyari.com/article/840374
https://daneshyari.com

