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s u(r,00=0 on [0,R], u(0,t) =0=u(R,t) for0<t<T,

351(60 where N is a positive integer, f is a given twice continuously differentiable function on
35K57 [0, ¢) for some constant ¢ with f (0) > 0,f" > 0,f” > 0, and lim,_, .- f (u) = oo. It is
35K20 shown that under some additional conditions on f, the problem has a weak solution, and all
35B35 weak solutions of the problem tend to a unique steady-state (nonclassical) solution U (r)
Keywords: as t tends to infinity. Furthermore, increasing the length R increases the interval where
Beyond quenching U (r) = c by the same amount.

Multi-dimensional parabolic quenching © 2012 Elsevier Ltd. All rights reserved.

Weak solution

1. Introduction

Let x = (X1, X2, X3, ..., Xy) be a point in the N-dimensional Euclidean space RN, Hu = u; — Au,D = {x: |x| <R} for
some positive constant R, aD be its boundary, D be its closure, T < oo, and
1 ifues,
xS) = {o ifugs,

be the characteristic function of the set S. Our main purpose here is to study what happens beyond quenching through the
radial solutions of the following problem:

Hu=f@w)x ({u<c}) inDx(0,T),
u(x,00=0 onD, ukx,t)=0 forxeodD,0<t<T,

where f (u) is twice continuously differentiable on [0, ¢) for some constant ¢ such that f (0) > 0,f > 0,f” > 0,
lim,_, .- f (u) = oo, jgf (u) du = Ky for some positive constant Ky, and for some positive constants K;, K, and K3,

(1.1)

2
fap (=2 <k, (1.2)
)
/Cf(s)dsfmin{Kz c—wf@,K3(c—u}, (1.3)

where y is a constant between 0 and 2.
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For any constant € > 0, let
c—u

fe) =f @ m
Then, lim._o fc () =f (u) x {u < c}),and f (u) < f (u). We have

—ef W+~ W) _ (- wf W)
(ef W+c—w? = (ef W) +c—u?

<1f(m<c_”)2
T e fa)

Using (1.2), we obtain f/ (u) < Ky/€2. Let us consider the regularized problem,

flw =

u(x,00 =0 onD, U (x,t) =0 forxedD,0<t<T (14)

Hu* =f. @) inDx (0,T), }
Since
HO=0<f.(0) inDx (0,T), u¢(x,0) =0 onD, u¢ (x,t)=0 forxe dD,0 <t <T,
it follows that 0 is a lower solution of the problem (1.4). Because
lim (c —u)
fe@© = lim fo )= — =0,

e+ lim (c—us lim -
<u€—>C_ ( )) (uf—w_ f )>
we have

Hc=0=f.(c) inDx (0,T),
c>u¢(x,00=0 onD, c>u‘(x,t)=0 forxedD,0<t<T.

Thus, ¢ is an upper solution.
The following existence result follows from Theorem 4.2.2 of Ladde et al. [1, p. 143].

Lemma 1.1. The problem (1.4) has a solution u® € C>**17*/2 (D x (0, T)), where 0 < « < 1.

A proof similar to that of Lemma 1 of Chan and Kaper [2] gives the following result.

Lemma 1.2. The problem (1.4) has at most one solution. In D x (0, T), 0 < u¢ < c, and u€ is a strictly increasing function of t.

Let u denote lim,_, o u€ if the limit exists.

Lemma 1.3. If 0 < €; < €y, then u! > u®2 inD x (0, T). Furthermore, u (x, t) is continuous on D x (0, T).

Proof. The proof of u¢ being a strictly decreasing function of ¢ is similar to that of Lemma 3 of Chan and Kong [3]. Since
0<u®<cinDx (0,T),andu¢ € C>' (D x (0, T)) is strictly increasing as € decreases, it follows from the Dini Theorem
(cf. Stromberg [4, p. 143]) that u¢ converges uniformly on D x (0, T), and hence, u (x, t) is continuousonD x (0, T). O

Theorem 1.1. In {u < ¢} N (D x (0, T)), the limit u (x, t) satisfies Hu = f (u) in the classical sense.

Proof. By Lemma 1.1, the problem (1.4) has asolutionu¢ € C2**:1+%/2 (D x (0, T)).Forany (xo, to) € {(x, ) : u (x,t) < c}N
(D x (0, T)), we have u (xq, ty) < c. From the proof of Lemma 1.3, u¢ converges uniformly to u as € decreases. There exists
a constant m depending on u (o, tp) and not on € such that 0 < u¢ < m < ¢ in some neighborhood X of (xo, ty). Since for
u<m,

B c—u _ ef? (u)
=t =@ <]_ ef(u)+c—u> T efW4c—u

erm _fim _ e m

T efWwW+c—u- c—u ~ c—m

we have that f, — f uniformly ase€ — 0on {(x,t) : u(x,t) < mj}. Let p be a constant such thatp > (N+2)/(2 — @).
Because u€ (x,t) < mfor (x,t) € X, we have [[ul|p5) = (f): (u)?P dxdt)l/p <m (fx dxdt)Vp < k, for some positive
constant ky. Since f. (u€) < f (u€) for any € > 0, and f is increasing, we have

Ife @ Npesy < M @)y < I M)llps) -
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