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a b s t r a c t

Since the celebrated Mackey–Glass model of respiratory dynamics was introduced in
1977, many results on its qualitative behavior have been obtained, including oscillation,
stability and chaos. The paper reviews some known properties and presents new results
for more general models: equations with time-dependent parameters, several delays, a
positive periodic equilibrium and distributed delays. The problems considered in the paper
involve existence, positivity andpermanence of solutions, oscillation and global asymptotic
stability. In addition, some general approaches to the study of nonlinear nonautonomous
scalar delay equations are outlined. The paper generalizes and unifies existing results and
provides an outlook on further studies.
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1. Preliminaries

To explain dynamic diseases, such as Cheyne–Stokes phenomenon (periodic breathing), the classical model

dy
dt

= λ−
α0Vmy(t)yn(t − τ)

θn + yn(t − τ)
(1.1)

was introduced byMackey and Glass in 1977 [1]. Here y(t) denotes the arterial concentration of CO2, λ is the CO2 production
rate, Vm denotes the maximum ventilation rate of CO2, and τ is the time between oxygenation of blood in the lungs and
stimulation of chemoreceptors in the brainstem. According to [1], the ventilation function

V (y) =
α0Vmyn

θn + yn

is a sigmoidal function of ywith the parameters θ > 0 and n > 0 to be adjusted to fit the experimental data. Amore detailed
description of the nature of model (1.1) and its applications can be found in [1–3], mathematical results for (1.1) were
presented in [2,4–9].
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Let y(t) = θx(t), then (1.1) can be rewritten as

dx
dt

= α −
βx(t)xn(t − τ)

1 + xn(t − τ)
, (1.2)

with the initial function x(t) = ϕ(t) for −τ ≤ t ≤ 0, ϕ ∈ C[[−τ , 0],R+
] and ϕ(0) > 0, where α = λ/θ and β = α0Vm. We

consider a modification of (1.2) with variable nonnegative parameters

dx
dt

= α(t)− β(t)x(t)
xn(h(t))

1 + xn(h(t))
, t ≥ 0 (1.3)

and the initial condition

x(t) = ϕ(t), t ≤ 0. (1.4)

Here α(t) and β(t) are Lebesgue measurable locally essentially bounded functions satisfying

α(t) ≥ 0 and β(t) ≥ 0. (1.5)

Henceforth we assume that h(t) is a Lebesgue measurable locally bounded function satisfying

h(t) ≤ t and lim
t→∞

h(t) = ∞. (1.6)

Also assume that ϕ(t) is nonnegative, ϕ(0) > 0, and ϕ(t) is a Borel measurable bounded function. To study oscillation and
global stability of model (1.3), we will use the substitution x = eu that transforms Eq. (1.3) into

du
dt

= α(t)e−u(t)
− β(t)

enu(h(t))

1 + enu(h(t))
, t ≥ 0. (1.7)

Eq. (1.7) belongs to a general class of nonlinear nonautonomous equations with variable delays

du
dt

+ f1(t, u(t))+ f2(t, u(h(t))) = 0. (1.8)

For example, Eq. (1.8) is more general than the autonomous equation

du
dt

= −au(t)+ f (u(h(t)))

which is a mainstay for the classical production–destruction or delayed recruitment models.
We begin our study with the abstract model (1.8) and obtain new global stability results, which are later used to prove

several new theorems for the Mackey–Glass equation (1.3) and its generalizations.
The paper is organized as follows. Section 2 includes a brief review of some known stability and oscillation results for

model (1.1). In Section 3, for a nonautonomous model, we examine the existence, positivity and permanence of global
solutions. Section 4 deals with oscillation properties of solutions. Global stability of nonautonomous equations is examined
in Section 5. For the autonomous case we compare sufficient stability conditions to the results recently obtained in [6], and
demonstrate that even for the autonomous model our results are novel. In Section 6, we extend our results and techniques
to more general models, including equations with several delays, periodic parameters and distributed delays. For equations
with periodic parameters we study global stability and oscillation about the positive periodic solution. It is noteworthy
to mention that, compared with previous results, sufficient explicit conditions of our theorems do not contain unknown
periodic solutions. For the equations with distributed delays we study permanence, global stability and oscillation. Finally,
a list of open problems and conjectures is presented. In the Appendix we present several proofs omitted in the main part of
the paper.

2. Review of known results

Provided that α and β are positive, Eq. (1.2) has a unique positive equilibrium K determined by the equation

βK n+1
= α(1 + K n). (2.1)

The standard linearization of Eq. (1.2) for y = x − K produces

dy
dt

= −ay(t)− by(t − τ), (2.2)

where a =
α
K and b =

αn
K(1+Kn) . Based on a classical result [10], any solution of Eq. (2.2) is asymptotically stable if a > b > 0.

We will say that a delay equation is absolutely stable if it is stable for any delay.

Theorem 2.1. If 0 < n < 1 + K n then (1.2) is absolutely locally asymptotically stable (LAS).
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