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a b s t r a c t

We extend the theory of Sobolev gradients to include variable metric methods, such as
Newton’s method and the Levenberg–Marquardt method, as gradient descent iterations
associated with stepwise variable inner products. In particular, we obtain existence,
uniqueness, and asymptotic convergence results for a gradient flow based on a variable
inner product.
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1. Introduction

A nonlinear partial differential equation may be formulated as the problem of minimizing a sum of squared residuals.
Consider the numerical solution of the corresponding discretized nonlinear least squares problem. Methods for treating
this problem include steepest descent, Newton, Gauss–Newton, and Levenberg–Marquardt which combines a Newton or
Gauss–Newton iterationwith themethod of steepest descent. In order to be effective, the numericalmethod should emulate
an iteration in the infinite-dimensional Sobolev space in which the PDE is formulated. The standard steepest descent
and Levenberg–Marquardt methods use a discretized L2 gradient rather than a Sobolev gradient, and thus lack integrity
because they approximate iterations that fail to maintain the smoothness required by the solution. A generalization of the
Levenberg–Marquardt method, along with an equivalent trust-region method, is described in [1]. The purpose of this work
is to provide a theoretical basis for that method.

Methods for analyzing partial differential equations may be more or less strongly connected to numerical algorithms.
The fixed point theorems of Schauder and Leray–Schauder [2], for example, give conditions under which a function defined
from a Banach space into itself has a fixed point, but do not provide a method for computing it. Existence proofs based
on continuous Newton’s method on the other hand, are obviously constructive; see, e.g., [3–5] for zero-finding results of
Nash–Moser type [6]. In [7] Newton’s method is discussed in relation to gradient descent methods. It is shown that, while
the method of steepest descent is locally optimal in terms of the descent direction for a fixed metric, Newton’s method is
optimal (in a sense which is made precise) in terms of both the direction and the inner product in a variable metric method.
In [8,9], nonlinear elliptic problems are treated by quasi-Newtonmethodswith a class of preconditioners chosen via spectral
equivalence to produce mesh-independent convergence rates.

In this paper, we describe conditions under which the trajectory of a gradient flow converges to a solution of a system of
PDEs. Our results are similar in nature to results obtained in [4,5]. Starting with a system of partial differential equations, we

∗ Corresponding author.
E-mail addresses: parimah.kazemi@gmail.com (P. Kazemi), renka@cs.unt.edu (R.J. Renka).

0362-546X/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2012.06.022

http://dx.doi.org/10.1016/j.na.2012.06.022
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:parimah.kazemi@gmail.com
mailto:renka@cs.unt.edu
http://dx.doi.org/10.1016/j.na.2012.06.022


P. Kazemi, R.J. Renka / Nonlinear Analysis 75 (2012) 6170–6179 6171

form a variational problem from the sum of squared residuals.We then define a gradient system [10] using a variablemetric,
and give conditions under which a global solution exists and under which the asymptotic limit exists and is a zero of the
least squares functional. When the gradient system is discretized in time and space, the resulting algorithm is a generalized
Levenberg–Marquardt method. Our method is thus constructive in nature.

The paper is organized as follows. In Section 2, we review basic results from the theory of Sobolev gradients. In Section 3,
we define the problem. In Section 4, we present results regarding existence, uniqueness, and convergence of the gradient
flow, and in Section 5, we conclude the paper.

2. Sobolev gradients

Consider the problem of finding critical points of a C1 energy functional φ defined on a Hilbert space H . The Fréchet
derivative φ′(u) is a bounded linear functional on H , and is therefore represented by an element of H . This element is the
Sobolev gradient of φ at u and is denoted by ∇Hφ(u):

φ′(u)h = ⟨h,∇Hφ(u)⟩H , h ∈ H.
Note that the gradient depends on the inner product attached to H . Now consider the evolution equation

z(0) = z0 ∈ H and z ′(t) = −∇Hφ(z(t)), t ≥ 0. (1)
The energy φ is non-increasing on the trajectory z. Existence, uniqueness, and asymptotic convergence to a critical point are
established by the following two theorems taken from [11, Chapter 4].

Theorem 1. Suppose that φ is a non-negative C1 real-valued function on a Hilbert space H with a locally Lipschitz continuous
Sobolev gradient. Then for each z0 ∈ H there is a unique global solution of (1).

Definition 1. The energy functional φ satisfies a gradient inequality on K ⊆ H if there exists θ ∈ (0, 1) and m > 0 so that
for all x ∈ K

∥∇Hφ(x)∥H ≥ mφ(x)θ .

Theorem 2. Suppose that φ is a non-negative C1 functional on H with a locally Lipschitz continuous gradient, z is the unique
global solution of (1), and φ satisfies a gradient inequality on the range of z. Then limt→∞ z(t) exists and is a zero of the gradient,
where the limit is defined by the H-norm. By the gradient inequality, the limit is also a zero of φ.

The above theorems provide a firm theoretical basis for the numerical treatment of a system of nonlinear PDEs by a
gradient descent method that emulates (1); i.e., discretization in time and space results in the method of steepest descent
with a discretized Sobolev gradient. Note that the Sobolev gradient method differs from methods based on calculus of
variations in which the Euler–Lagrange equation is solved. Forming the Euler–Lagrange equation requires integration by
parts to obtain the element that represents φ′(u) in the L2 inner product. This L2 gradient is usually only defined on a
Sobolev space of higher order than that of H . Hence, unlike the Sobolev gradient, the L2 gradient is only densely defined on
the domain of φ. For gradient flows involving the L2 gradient, existence and uniqueness results similar to those of Theorem 1
and Theorem 2 may be proved, but only under stricter assumptions.

In most applications of the Sobolev gradient method to date the underlying Hilbert space structure is equipped with a
fixed metric, typically the metric associated with the Sobolev space Hk(Ω) for some positive integer k. While substituting
the discretized Hk gradient for the L2 gradient can result in a dramatic improvement in numerical performance, the method
is still a gradient descent algorithm and has at best a linear rate of convergence. In [12,8,9,1,13], a quasi-Newton or variable
metric method is used in place of a fixed metric to obtain superlinear rates of convergence. In this work, we establish a
theoretical basis for the method of Sobolev gradients with a variable metric.

3. Defining the problem in a Hilbert space setting

Our focus in this section is on setting up a theoretical framework for the treatment of a least squares variational
formulation of a system of nonlinear partial differential equations by a variable metric method.

3.1. Preliminaries

In order to simplify the notation we restrict consideration to a single first-order partial differential equation. Extension
to higher-order derivatives and Cartesian-product spaces is straightforward. For an appropriate domain Ω in Rd, denote a
Sobolev space by H = H1,2(Ω), and let L = L2(Ω) so that H is densely and continuously embedded in L. Also, let L1 = Ln for
n = d + 1, and define D : H → L1 by Du = {∂αu : |α| ≤ 1} for d-dimensional multi-index α. We can view H as the space of
first terms of the closure of {Du : u ∈ C1(Ω)} in L1 equipped with the norm ∥u∥H = ∥Du∥L1 ([14, Section 3.5]).

For a positive integer m define L2 = Lm, and let r : Rn
→ Rm be a C1 function so that the composition r ◦ D : H → L2

defined by ((r ◦D)(u))(x) = r(Du(x)) for almost every x ∈ Ω is well defined and C1 with ((r ◦D)′(u)v)(x) = r ′(Du(x))Dv(x)
for almost every x. The mapping r is a Nemytskii operator.
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