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a b s t r a c t

Let p ∈ (0, 1],Ω be a strongly Lipschitz domain in Rn and A := −(∇ − ia⃗) · (∇ − ia⃗)+ V
a magnetic Schrödinger operator on L2(Ω) satisfying the Dirichlet boundary condition,
where a⃗ := (a1, . . . , an) ∈ L2loc(Ω,R

n) and 0 ≤ V ∈ L1loc(Ω). In this paper, the authors
introduce theHardy spaceHp

A(Ω) by the Lusin area function associatedwithA and establish
its equivalent characterization via the non-tangential maximal function associated with
{e−t

√
A
}t>0. As applications, the authors obtain the boundedness of the Riesz transforms

LkA−
1
2 , k ∈ {1, . . . , n}, from Hp

A(Ω) to Lp(Ω) for p ∈ (0, 1] and the fractional integral A−γ

from Hp
A(Ω) to Hq

A(Ω) for 0 < p < q ≤ 1 and γ :=
n
2 (

1
p −

1
q ), where Lk is the closure of

∂
∂xk

− iak in L2(Ω).
© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The theory of Hardy spaces on the n-dimensional Euclidean space Rn, initiated by Stein andWeiss [1], plays an important
role in various fields of analysis and has been transformed into a rich and multifaceted theory; see, [2,3]. It is known that
the classical Hardy spaces on Rn are essentially related to the Laplacian △ :=

n
i=1

∂2

∂x2i
and good substitutes of Lebesgue

spaces when p ∈ (0, 1] in the study of the boundedness of operators.
One important aspect of the development in the theory of Hardy spaces is the study of Hardy spaces on domainsΩ of Rn;

see, for example, [4–7]. Especially, letΩ be a strongly Lipschitz domain in Rn and H1
r (Ω) the restriction toΩ of the Hardy

space H1(Rn). Under the so-called Dirichlet boundary condition, Auscher and Russ [8] proved that the space H1
r (Ω) can be

characterized by the non-tangential maximal function and the area integral function associated with {e−t
√
L
}t>0, where L

is an elliptic second-order divergence operator such that, for all t ∈ (0,∞), the kernel of e−tL satisfies the Gaussian upper
bound and the Hölder continuity. Recently, when p ∈ (n/(n+1), 1], V is a nonnegative polynomial on Rn and L := −△+V
a Schrödinger operator, Huang [9] introduced the Hardy space Hp

L, r(Ω) by restricting the Hardy space Hp
L (R

n), which was
introduced and studied by Dziubański [10], to Ω and further established the characterizations of Hp

L, r(Ω) in terms of the

non-tangential maximal function and the area integral associated with {e−t
√
L
}t>0.

∗ Corresponding author.
E-mail addresses: dcyang@bnu.edu.cn (Da. Yang), dyyang@xmu.edu.cn (Do. Yang).

1 Present address: School of Mathematical Sciences, Xiamen University, Xiamen 361005, People’s Republic of China.

0362-546X/$ – see front matter© 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2012.07.016

http://dx.doi.org/10.1016/j.na.2012.07.016
http://www.elsevier.com/locate/na
http://www.elsevier.com/locate/na
mailto:dcyang@bnu.edu.cn
mailto:dyyang@xmu.edu.cn
http://dx.doi.org/10.1016/j.na.2012.07.016


6434 Da. Yang, Do. Yang / Nonlinear Analysis 75 (2012) 6433–6447

In recent years, the study of the magnetic Schrödinger operator attracts a lot of attention; see, for example, [11–15]. Let
C∞
c (Ω) be the set of C∞(Ω) functions with compact support inΩ and

A :=

n
k=1

L∗

kLk + V

the magnetic Schrödinger operator, where Lk is the closure in L2(Ω) of ∂
∂xk

− iak with domain C∞
c (Ω), L

∗

k the adjoint operator
of Lk in L2(Ω), k ∈ {1, . . . , n}, a⃗ := (a1, . . . , an) ∈ L2loc(Ω,R

n) the magnetic potential and 0 ≤ V ∈ L1loc(Ω) the electrical
potential. WhenΩ := Rn, Shen [11] obtained the Lp(Rn), with p ∈ (1,∞), estimates and the weak-type (1, 1) estimate for
the Riesz transforms {LjLkA−1

}
n
j, k=1 under slightly strong assumptions on a⃗ and V ; Duong et al. [13] further established

the boundedness of the Riesz transforms {LkA−
1
2 }

n
k=1 on Lp(Rn), with p ∈ (1, 2], and the boundedness from the Hardy

space H1
A(R

n), introduced by Auscher et al. in [16], to L1(Rn). Let X be a metric measure space and L a nonnegative self-
adjoint operator satisfying the so-called Davies–Gaffney estimate. Hofmann et al. [17] introduced and characterized the
Hardy space H1

L (X) in terms of atoms, molecules and the Lusin area function associated with the semigroup {e−t
√
L
}t>0.

These characterizations were, in [17], applied to the Schrödinger operator A on Rn with a⃗ := 0 to establish the equivalent
characterizations of H1

A(R
n) in terms of the non-tangential maximal function Nhf and the radial maximal function Rhf

associated with {e−t2A
}t>0, and the non-tangential maximal function NP f and the radial maximal function RP f associated

with {e−t
√
A
}t>0, respectively. All these results were further generalized to Orlicz–Hardy spaces in [18], which include the

Hardy spaces Hp
A(R

n) for a⃗ := 0 and p ∈ (0, 1] as a special case. In [19], the equivalent characterizations of Hp
A(R

n) with
p ∈ (0, 1] were established in terms of Nhf ,NP f , Rhf and RP f , respectively.

The purpose of this paper is to characterize Hardy spaces associated with the magnetic Schrödinger operator A on a
strongly Lipschitz domainΩ . By Hundertmark and Simon [12, Theorem 3.3], one can see that, for all t ∈ (0,∞), the Poisson
kernel pt(x, y) of e−t

√
A satisfies the Poisson upper bound onΩ . However, to the best of our knowledge, it is unclear whether

pt(x, y) has the Hölder continuity on space variables or not. Without the regularity of pt on space variables and, moreover,
noticing that the atoms and the molecules of Hp

A(R
n) in [17,18] are closely connected to A, it seems that it is not convenient

to introduce a useful Hardy space Hp
A(Ω) just by restricting the elements of Hp

A(R
n) in [17,18] to Ω as in [8] (see also [9]),

since the regularity of the Poisson kernels pt(x, y) on space variables plays an important role in [8,9]. Recall that a strongly
Lipschitz domain is a space of homogeneous type. Based on this observation and the aforementioned papers [17,18] on
spaces of homogeneous type, in this paper, we define the Hardy space Hp

A(Ω) by regarding Ω as a space of homogeneous
type and then establish its equivalent characterization via NP f related to the Poisson kernel and also the boundedness of the
associated Riesz transforms and the fractional integrals.

To state ourmain results, we first recall somenecessary notions and notation. Assume thatΩ is a strongly Lipschitz domain
in Rn, that is,Ω is a proper open connected set in Rn whose boundary is a finite union of parts of rotated graphs of Lipschitz
maps, at most one of these parts possibly unbounded; see [8]. Let a⃗ := (a1, . . . , an) ∈ L2loc(Ω,R

n), 0 ≤ V ∈ L1loc(Ω) and
Lk, k = 1, . . . , n, be as above. Define the sesquilinear form Q by

Q (f , g) :=

n
k=1


Ω

Lkf (x)Lkg(x) dx +


Ω

V (x)f (x)g(x) dx (1.1)

with domain

D(Q ) := W 1, 2
a⃗, V (Ω) :=


f ∈ L2(Ω) : Lkf ∈ L2(Ω), k ∈ {1, . . . , n},

√
V f ∈ L2(Ω)


.

In what follows, for any f ∈ W 1, 2
a⃗, V (Ω), we define its norm by

∥f ∥W1, 2
a⃗, V (Ω)

:= ∥f ∥L2(Ω) +

n
k=1

∥Lkf ∥L2(Ω) + ∥
√
V f ∥L2(Ω).

It is known that Q is symmetric and closed. Let W be a closed subset of W 1, 2
a⃗, V (Ω). Then the magnetic Schrödinger operator A

is defined to be the maximal-accretive operator on L2(Ω) with largest domain D(A) ⊂ W such that, for all f ∈ D(A) and
g ∈ W ,

⟨Af , g⟩ = Q (f , g). (1.2)

Then it is known that the magnetic Schrödinger operator A is self-adjoint; see, for example, [20, Proposition 1.24]. Formally,
we write

Af :=

n
k=1

L∗

kLkf + Vf (1.3)

or A := −(∇ − ia⃗) · (∇ − ia⃗) + V . As in [8], we say that A satisfies the Dirichlet boundary condition (for simplicity, DBC) if
W := W 1, 2

a⃗, V , 0(Ω), whereW 1, 2
a⃗, V , 0(Ω) is the closure of C∞

c (Ω) in W 1, 2
a⃗, V (Ω).
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