Contents lists available at SciVerse ScienceDirect

Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

On weak*-extensible Banach spaces

Jesús M.F. Castillo^{a,*}, Manuel González^b, Pier Luigi Papini^c

^a Departamento de Matemáticas, Universidad de Extremadura, Avenida de Elvas s/n, 06071 Badajoz, Spain

^b Departamento de Matemáticas, Facultad de Ciencias, Universidad de Cantabria, E-39071 Santander, Spain

^c Dipartimento di Matematica, Universitá degli Studi di Bologna, Piazza Porta S. Donato 5, 40126 Bologna, Italy

ARTICLE INFO

Article history: Received 30 January 2012 Accepted 4 April 2012 Communicated by S. Carl

MSC: 46B20 46B07 46A16

Keywords: Weak*-sequentially continuous dual ball Banach spaces Gelfand–Phillips property Extension of operators

ABSTRACT

We study the stability properties of the class of weak*-extensible spaces introduced by Wang, Zhao, and Qiang showing, among other things, that weak*-extensibility is equivalent to having a weak*-sequentially continuous dual ball (in short, w*SC) for duals of separable spaces or twisted sums of w*SC spaces. This shows that weak*-extensibility is not a 3-space property, solving a question posed by Wang, Zhao, and Qiang. We also introduce a restricted form of weak*-extensibility, called separable weak*-extensibility, and show that separably weak*-extensible Banach spaces have the Gelfand–Phillips property, although they are not necessarily w*SC spaces.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In a recent paper [1], Wang, Zhao, and Qian introduce and study the notion of a weak*-extensible Banach space as follows.

Definition 1. A Banach space *X* is said to be weak*-extensible if, for every subspace *Y*, every weak*-null sequence $(f_n) \subset Y^*$ admits a subsequence (f_m) which can be extended to a weak*-null sequence $(F_m) \subset X^*$.

The main results presented in [1] are as follows.

- 1. (Thm. 4.2) Every Banach space X whose dual unit ball is weak*-sequentially compact (w*SC property, in short) is weak*-extensible.
- 2. (Thm.4.5) The product of a weak*-extensible space by a finite dimensional space is weak*-extensible.
- 3. (Thm. 4.3) Subspaces and quotients of weak*-extensible spaces are weak*-extensible.

Moreover, two problems are posed in [1, remark 4.7]; recall that a property P is said to be a 3-space property if a space X containing a subspace Y such that both Y and X/Y have P must also have P.

- (4) Is weak*-extensibility a 3-space property?
- (5) Does a weak*-extensible space have a weak*-sequentially compact dual ball?

In this paper, we introduce new techniques to study weak*-extensible spaces which allow us to obtain generalizations for results (1)-(3), partial answers to (5), and a negative answer to problem (4).

* Corresponding author.

E-mail addresses: castillo@unex.es (J.M.F. Castillo), manuel.gonzalez@unican.es (M. González), pierluigi.papini@unibo.it (P.L. Papini).

⁰³⁶²⁻⁵⁴⁶X/\$ – see front matter 0 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2012.04.008

Definition 2. Given a subspace *Y* of a Banach space *X*, we say that *Y* is weak*-extensible in *X* if any weak*-null sequence $(f_n) \subset Y^*$ admits a subsequence (f_m) which can be extended to a weak*-null sequence $(F_m) \subset X^*$.

This notion was introduced in [2]. Recall that a weak*-null sequence (f_n) on the dual of a Banach space Z can be identified with the operator $Z \to c_0$ defined by $x \to (f_n(x))_n$. It is obvious that, if Y is complemented in Z, then it is weak*-extensible in Z. Sobczyk's theorem is usually stated as follows: if Y is a subspace of a separable space Z, then every operator $Y \to c_0$ can be extended to an operator $Z \to c_0$. However, it follows from Sobczyk's proof that, if Y is a subspace of a space Z in such a way that Z/Y is separable, then every operator $Y \to c_0$ can be extended to an operator $Z \to c_0$. Thus, every subspace Y of Z such that Z/Y is separable is weak*-extensible. It is equally obvious that, given $Y \subset W \subset Z$, if Y is weak*-extensible in W and W is weak*-extensible in Z, then Y is weak*-extensible in Z. If c_0 is weak*-extensible in Z, then a subsequence of the canonical basis must span a complemented subspace. Hence, no copy of c_0 is weak*-extensible in ℓ_{∞} [1, Cor.3.3]. A short exact sequence of Banach spaces is a diagram

 $0 \longrightarrow Y \xrightarrow{j} X \xrightarrow{q} Z \longrightarrow 0$

formed by Banach spaces and linear continuous operators such that the image of each arrow coincides with the kernel of the next one. The middle space *X* is also called a *twisted sum* of *Y* and *Z*. It follows from the definition that *j* embeds *Y* as a subspace of *X* and, thanks to the open mapping theorem, *Z* is isomorphic to X/j(Y). The sequence is said to be trivial, or to split, if j(Y) is complemented in *X*, in which case *X* is isomorphic to $Y \oplus Z$.

2. Separably weak*-extensible spaces

Let us introduce a useful variation of the notion of weak*-extensibility.

Definition 3. A Banach space *X* is said to be separably weak*-extensible if any closed separable subspace *Y* is weak*-extensible in *X*.

An interesting link can be established with the separable complementation property (in short, &CP); recall from [3], see also [4], that a Banach space X is said to have the separable complementation property if every separable subspace of X is contained in a separable subspace complemented in X. The following is blatantly obvious.

Lemma 1. Spaces with the *SCP* are separably weak*-extensible.

The converse fails. There are spaces having a weak*-sequentially compact dual ball which fail the &CP. The simplest example is perhaps provided by any non-trivial exact sequence

 $0 \longrightarrow c_0 \longrightarrow X \longrightarrow c_0(\mathfrak{c}) \longrightarrow 0,$

where c is the cardinal of the continuum. They exist, as can be seen in [5,6]. On the one hand, by virtue of Sobczyk's theorem, any space containing an uncomplemented copy of c_0 must fail the $\&C\mathcal{P}$; hence X does not have the $\&C\mathcal{P}$. On the other hand, it is easy to see that $X^* \simeq \ell_1(c)$; hence X^* has density character c, and therefore X^* has cardinal c, as well as its unit ball. The Cech–Pospisil theorem [7] establishes that any compact not sequentially compact space must have cardinal at least 2^{\aleph_1} ; therefore, under the continuum hypothesis, in short CH, the space X is w*CS. The list of known spaces with the $\&C\mathcal{P}$ includes weakly compactly generated spaces; in particular, reflexive spaces (see [8]); weakly sequentially complete Banach lattices; in particular, $\ell_1(\Gamma)$ -spaces [9]; Banach spaces with the commuting bounded approximation property [10]; duals of Asplund spaces (see [11, p.38]; see also [12, Thm. 3.42]); Plichko spaces (see [13]); there also exist non-Plichko C(K)-spaces with the $\&C\mathcal{P}$ (see [14]). We add a new example to this list.

Proposition 1. For every ordinal α , the space $C(\alpha)$ has the \mathcal{SCP} and is weak*-extensible.

The proof combines [15, Thm. 1.6], where Kalenda and Kubiś show that $C(\alpha)$ spaces for any ordinal α enjoy the so-called *controlled separable complementation property* (in short, C&CP) with [16, Thm. 1.1], where Ferrer and Wójtowicz show that the C&CP implies w*SC.

A Banach space X is said to have the Gelfand–Phillips property if limited sets are relatively compact. Recall that a set A is said to be limited if, whenever (f_n) is a weak*-null sequence in X*, one has

 $\lim_n \sup_{a \in A} |f_n(a)| = 0.$

In [17, Cor. 1.3.3], Schlumprecht characterizes the Gelfand–Phillips property in C(K)-spaces as follows: every sequence in X equivalent to the canonical basis of c_0 admits a subsequence spanning a complemented subspace. This immediately yields that separably weak*-extensible C(K)-spaces have the Gelfand–Phillips property. We show that this result holds in arbitrary spaces. We start with a characterization of the Gelfand–Phillips property surely known but for which we have found no specific reference in the literature. Download English Version:

https://daneshyari.com/en/article/840447

Download Persian Version:

https://daneshyari.com/article/840447

Daneshyari.com