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a b s t r a c t

This paper studies a coupled system of hyperbolic and parabolic equations governing
the motion of viscoelastic, incompressible fluids on various domains. The model under
consideration covers a wide range of nonlinear fluids including generalized Newtonian
fluids, generalized Oldroyd-B fluids or Peterlin approximations. Existence and uniqueness
of strong Lp-solutions for large times are proved for small data, for arbitrarily large data
local well-posedness is shown.
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1. Introduction

A commonly used model to describe the motion of a fluid in mathematical and engineering applications is the
Navier–Stokes system which is based on a linear dependence of extra stress on the deformation tensor. In many cases,
however, more complex fluids, such as polymeric liquids, biological fluids, suspensions or liquid crystals, exhibit behavior
which cannot be characterized by this relation alone. Shear-thinning (or respectively shear-thickening), stress-relaxation,
nonlinear creeping and more observed effects call for more general models.

In this work, we consider a nonlinear model describing the motion of an incompressible viscoelastic fluid given by the
following quasilinear system of coupled hyperbolic and parabolic partial differential equations:

ρ(∂tu + u.∇u) − div Sv(Du) + ∇π = div µ(τ) + f in (0, T0) × Ω,
div u = 0 in (0, T0) × Ω,
∂tτ + u.∇τ + bτ = g(∇u, τ ) in (0, T0) × Ω,
u|∂Ω = 0 on (0, T0) × ∂Ω,
u(0) = u0 in Ω,
τ (0) = τ0 in Ω.

(1.1)
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Here, the unknowns are the velocity field u, the pressure π and the elastic part of the stress τ . Furthermore, ρ is the density,
Sv(Du) the viscous part of the stress tensor, f exterior body force and µ and g some given functions. The deformation tensor
is denoted by Du =

1
2 (∇u + ∇uT ).

For the viscous part of the stress, we impose the generalized Newtonian law

Sv(Du) = 2α1(tr((Du)2), tr((Du)3))Du + 2α2(tr((Du)2), tr((Du)3))(Du)2 (1.2)

where α1 is the viscosity function and α2 relates to the cross-viscosity. Note that for divergence free functions tr((Du)2) =

|Du|2 and tr((Du)3) = det Du.
Roughly speaking, we prove existence and uniqueness of a strong solution (u, π, τ ) up to an arbitrary time T0 > 0 for

a wide class of domains provided the data is sufficiently small, g(0, 0) = 0 (or smallness of |g(0, 0)| if the domain Ω is
bounded) and α1(0, 0) > 0. Note that – besides regularity – no further restrictions on the structure of µ, α1, α2 and g are
imposed. Moreover, for constant α1 > 0 and α2 = 0 local strong well-posedness is proved for arbitrarily large data in the
same setting. In this case, the condition g(0, 0) = 0 can be omitted if Ω is bounded.

Before we state our main result precisely, let us briefly discuss related results found in the literature.
In [1], strong Lp-theory for generalized Newtonian fluids without elasticity, i.e. incompressible viscous fluids satisfying

the generalized Newtonian law (1.2) and τ ≡ 0, is considered for small initial data u0. Recently, Bothe and Prüß [2] have
extended these results to the case of large initial data.

The special case of Oldroyd-B fluids (cf. [3]), i.e. for constant α1 > 0, α2 = 0 and setting

µ(τ) = τ and g(∇u, τ ) = βDu − τWu + Wuτ + a(Duτ + τDu) (1.3)

for β > 0, −1 ≤ a ≤ 1 and Wu =
1
2 (∇u − ∇uT ), has been investigated by Guillaupé and Saut in the L2-setting [4] in

bounded domains. They proved the existence of local strong solutions for large data as well as global solutions for small
data with a Schauder fixed point argument. Their method relies on a priori estimates and compactness arguments.

Later, Fernández-Cara et al. [5] proved the existence of unique strong solutions in an Lp-setting similar to our approach
for the samemodel problem as Guillaupé and Saut also in a bounded domain. They rely on a Schauder fixed point argument
as well.

Amore general system thanOldroyd-B, where in (1.3) the constant termβ is replaced by a shear-rate dependent function
β(|Du|2), has been investigated in the steady L2-setting on bounded and exterior domains by Arada and Sequeira [6,7]. This
model is called generalized Oldroyd-B.

Another generalization of the Oldroyd-Bmodel is the so-calledWhite–Metzner system (cf. [3]), where one takes constant
α1 > 0, α2 = 0, b = 0, the identity µ(τ) = τ and

g(∇u, τ ) = β(|Du|2)Du + γ (|Du|2)τ − τWu + Wuτ + a(Duτ + τDu)

for some functions β and γ . Strong well-posedness of this model in 2D has been shown in the L2-setting by Hakim [8] and
later also in 3D by Molinet and Talhouk [9] in the non-stationary case in bounded domains.

Note that, in particular, our main result shows well-posedness in Lp in all cases mentioned above.
Bringing together a nonlinear viscosity function and elastic effects, Agranovich and Sobolevskii [10] and Dmitrienko et al.

[11] studied a viscoelastic fluid model in the L2-setting on a bounded domain. However, they replaced the frame-invariant
objective derivative

Daτ

Dt
= ∂tτ + u.∇τ + τWu − Wuτ − a(Duτ + τDu)

by a partial derivative ∂t . This way, one can directly integrate the transport equation and insert the resulting elastic stress
into the fluid equation.

Finally, we would like to mention a work by Vorotnikov and Zvyagin [12] who considered a problem very similar to the
one we consider in this article. They proved the existence of strong solutions in the L2-setting where Ω = Rn, n = 2, 3.
However, due to the L2-approach using a priori estimates for a nonlinear system, they impose strong regularity assumptions
on the initial data, i.e. u0 ∈ H3

2 (R
n) and τ0 ∈ H3

2 (R
n). It is thus likely that a generalization of their method to domains – if

possible – would lead to additional compatibility conditions on the initial stress.
In contrast to their approach, our proof relies on Lp-theory and thus allows to deal with a wide class of domains without

further compatibility conditions and lower regularity assumptions on the initial data.
Throughout this paper for p, q ∈ [1, ∞], s ∈ R+ and k ∈ N0 the spaces Hs

q(Ω), W s
q(Ω), Bs

pq(Ω) and Hk
q (Ω) denote

the usual Bessel potential spaces, Sobolev spaces, Besov spaces and homogeneous Sobolev spaces, respectively. If not
said otherwise, Ω ⊂ Rn is a domain with a uniform C2-boundary (boundary regularity is to be understood in the sense
of [13, Definition 4.10]). This guarantees the existence of a total extension operator for Ω , see [13, Theorem 5.24]. Hence,
interpolation theory for Bessel potential spaces and Besov spaces, Sobolev embedding theorems and the mixed derivative
theorem are valid in Ω .

Moreover, for q ∈ (1, ∞) and a domain Ω ⊂ Rn we define the space of solenoidal vector fields by

Lq,σ (Ω) = {u ∈ C∞
c (Ω)n : div u = 0}

Lq(Ω)
.
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