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a b s t r a c t

In this paper, we prove that every noncommutative L1-space associated to a finite von
Neumann algebra can be renormed to satisfy the fixed point property for nonexpansive
affine mappings. Particular examples are L1(R), where R is the hyperfinite II1 factor and
the function spaces L1[0, 1] and L1(µ) for any σ -finite measure space. This property does
not hold for the usual ∥ · ∥1 norm.
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1. Introduction

The present paper is a consequence of the authors’ work in [1,2] and Randrianantoanina’s generalization of Komlos’
theorem to the setting of non-commutative L1-spaces [3]. A Banach space X is said to have the fixed point property (FPP) if
every nonexpansivemapping defined from a closed convex bounded subset into itself has a fixed point. It is well-known that
classical nonreflexive Banach spaces such as c0, ℓ1 and L1[0, 1] fail to have the FPP. Lin [4] showed that ℓ1 can be renormed
to satisfy the FPP. It is still unknown whether c0 or L1[0, 1] can be renormed to have the FPP. In [1], the authors proved that
there exist some closed subspaces of L1[0, 1] (non-isomorphic to ℓ1) that can also be renormed to satisfy the FPP. These
results were extended in the case of non-commutative L1-spaces in [2].

Let C be a convex subset. Amapping T : C → C is said to be affine if T (λx+(1−λ)y) = λTx+(1−λ)Tywhenever x, y ∈ C
and λ ∈ [0, 1]. Fixed point theorems for affine mappings have been widely studied [5–9]. Moreover, affine mappings have
been useful to characterize weak compactness in Banach spaces by means of fixed point theorems: if C is a convex bounded
subset of a Banach space X , then C is weakly compact if and only if for every closed convex subset K ⊂ C and for every
affine continuous mapping T : K → K , there exists a fixed point [5]. In fact, the continuity condition can be replaced by
nonexpansiveness whenever X = L1[0, 1] or more generally whenever X is an L-embedded Banach space [5,6]. Notice that
the affine condition in the previous characterization cannot be omitted [10].

A Banach space X is said to have the fixed point property for affine mappings (A-FPP) if every affine nonexpansive
mapping defined from a closed convex bounded subset into itself has a fixed point. Since the classical nonreflexive sequence
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spaces ℓ1 and c0 fail to have the A-FPP (see for instance [11, Chapter 3]), every Banach spacewhich contains an isometric copy
of ℓ1 or c0 also fails this property. What is more, it can be checked that every Banach space which contains an asymptotically
isometric copy of either ℓ1 or c0 also fails the A-FPP. This implies that every nonreflexive subspace of L1[0, 1] or more
generally, every nonreflexive subspace of the noncommutative space L1(M) associated to a von Neumann algebra fails to
have the A-FPP, because they contain asymptotically isometric copies of ℓ1 [12].

In this paper, we consider a finite von Neumann algebra M and let L1(M) be the corresponding noncommutative
L1-space, which fails the A-FPP for the usual ∥ · ∥1 norm defined by ∥x∥1 = τ(|x|) where τ is a normal finite faithful trace on
M. Ourmain purpose is to obtain an equivalent norm |||·||| in L1(M) such that (L1(M), |||·|||) does satisfy the A-FPP.Moreover,
we will show that this renorming can be chosen as ’close’ to the usual norm as we want. In the L1[0, 1] case, the renorming
can be defined by using non-increasing rearrangement functions and maximal functions. In particular, we will deduce that
the above characterization of weak compactness in subsets of L1[0, 1] by using fixed point theorems for affine nonexpansive
mappings does not hold if we change the ∥ · ∥1 norm for an equivalent one, independently of the Banach–Mazur distance
between them.

2. Preliminaries

For background results concerning the fixed point property for nonexpansive mappings, the reader can consult [11]
or [13] and the references therein.

As a consequence of the Schauder–Tychonoff Theorem (see [14, p. 74]), every reflexive Banach space satisfies the A-FPP.
This is due to the fact that every affine continuous self-mapping defined on a closed convex set is weakly continuous and
bounded closed subsets are weakly compact whenever X is reflexive. Following the proofs given in [15,16] regarding to
the failure of the FPP (see also Theorems 2.3 and 2.4 in [13], Chapter 9), for nonreflexive Banach spaces we can state the
following.

Theorem 2.1. Let X be a Banach space which contains an asymptotically isometric copy of either ℓ1 or c0. Then X fails to have
the A-FPP.

In particular, we can deduce that every nonreflexive subspace of L1[0, 1] or more generally every nonreflexive subspace
of L1(M) fails to have the A-FPP for its usual norm. Also that every nonreflexive subspace of anM-embedded Banach space
(such as the space of the compact operators in a Hilbert space K(H)) fails to satisfy the A-FPP (see [12]).

For definition and examples of non-commutative L1-spaces the reader can consult [2] and the references therein. We
assume that M is a finite von Neumann algebra on a separable Hilbert space and τ a finite normal faithful trace on M. We
denote by L1(M) the corresponding non-commutative L1-space with usual norm ∥x∥1 = τ(|x|).

Every commutative von Neumann algebra is finite. In the case of L∞(µ), for (Ω, Σ, µ) a σ -finite measure space, we can
consider the following finite trace:

τ(f ) =

∞
n=1

1
2nµ(Ωn)


Ωn

fdµ, f ∈ L∞(µ);

where Ω = ∪Ωn, the collection {Ωn} is pairwise disjoint and µ(Ωn) < +∞. Here L1(µ) is isometric to L1(ν) with

ν(A) =

∞
n=1

1
2nµ(Ωn)

µ(A ∩ Ωn).

Thus, we can treat σ -finitemeasure L1(µ) spaces as if theywere finite up to isometry. In fact, it is a classical result (see for
instance [17, Chapter 7]) that every commutative vonNeumann algebraM can be isometrically identifiedwith L∞(Ω, Σ, µ)
for some abstract measure space (Ω, Σ, µ).

We recommend [18–22] as important references in the framework of von Neumann algebras.

3. An equivalent norm in L1(M) with the A-FPP

Following the same arguments as in the proof of Theorem 1 in [1], we can state the following.

Theorem 3.1. Let X be a Banach space endowed with a linear topology T and a family of seminorms {Rk(·)}k≥1 which satisfy the
following properties:

(I) R1(x) = ∥x∥ while for k ≥ 2, Rk(x) ≤ ∥x∥ for all x ∈ X.
(II) limk Rk(x) = 0 for all x ∈ X.
(III) If xn

T
→ 0 is norm-bounded and k ≥ 1 we have

lim sup
n

Rk(xn) = lim sup
n

∥xn∥1.
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